
A Collaborative Neurodynamic Optimization
Algorithm Based on Boltzmann Machines for

Solving the Traveling Salesman Problem
Hongzong Li

Department of Computer Science
City University of Hong Kong

Kowloon, Hong Kong
hongzli2-c@my.cityu.edu.hk

Jun Wang
Department of Computer Science

& School of Data Science
City University of Hong Kong

Kowloon, Hong Kong
jwang.cs@cityu.edu.hk

Abstract—The traveling salesman problem is known to be
NP-hard and has numerous areas of applications. This paper
proposes a collaborative neurodynamic optimization algorithm
based on Boltzmann machines for solving the traveling salesman
problem. A population of Boltzmann machines is employed for
local search, and their initial states are repeatedly reinitialized
by using the particle swarm optimization update rule for global
repositioning. The efficacy of the proposed collaborative neurody-
namic optimization algorithm is substantiated on four traveling
salesman problem benchmark instances.

Index Terms—Traveling salesman problem, collaborative neu-
rodynamic optimization, Boltzmann machine.

I. INTRODUCTION

The traveling salesman problem (TSP) is one of the most
widely studied combinatorial optimization problems. It is to
find a round trip visiting each city once with the minimal
total distance. TSP arises in numerous applications, such as
job sequencing [1], vehicle routing [2], wallpaper cutting [3],
VLSI circuit wire routing [3], and warehouse order-picking
[4].

Numerous methods are developed for solving TSP, in-
cluding exact methods, approximate methods, and heuristic
and meta-heuristic methods. Exact methods include branch
and bound algorithm [5], branch and cut algorithm [6], etc.
Approximate methods include restricted Lagrangean approach
[7], etc. Heuristic and meta-heuristic methods include nearest
neighbor algorithm [8], insertion method [8], generalized
insertion procedure with unstringing and stringing [9], genetic
algorithm [10], ant colony optimization [11], hybrid heuristic
[12], particle swarm optimization [13], etc.

Since John Hopfield pointed out that the networks of
simple and similar neurons collectively can serve as powerful
computation models [14], [15], neurodynamic optimization
approaches have attracted much attention. Specifically, the
discrete and continuous Hopfield networks in [14], [15] are

This work was supported in part by the Research Grants Council of the
Hong Kong Special Administrative Region of China under Grant 11202318,
and Grant 11202019; and in part by the Laboratory for AI-Powered Financial
Technologies.

developed for linear programming and combinatorial optimiza-
tion [16]–[18] including TSP [19], [20]. Numerous recurrent
neural networks are developed for solving various optimization
problems; e.g., [21]–[27]. Different from these deterministic
neurodynamic optimization models, the Boltzmann machine
is a stochastic neural network [28] with a local hill-climbing
capability for combinatorial optimization [29], [30]. It is
used for solving TSP [31], maximum independent problem
[29], set partitioning problem [29], max cut problem [30],
independent set problem [30], graph coloring problem [30],
clique partitioning problem [30], etc. Although a Boltzmann
machine is proved to be almost surely convergent to global
optima, it entails a sufficient long cooling schedule.

It is easy to get stuck in a local optimum when a single
neurodynamic model is applied to solve combinatorial opti-
mization problems with binary variables [32]. To overcome
the aforementioned shortcoming, collaborative neurodynamic
optimization (CNO) is proposed for solving combinatorial
optimization problems [33]. In a framework of CNO, a pop-
ulation of neurodynamic models work individually in parallel
for scattered local search until convergence and their neuronal
states are repeatedly initialized by using a meta-heuristic rule
for global repositioning local search toward global optima. As
a paradigm of hybrid intelligence to integrate neurodynamic
optimization with swarm intelligence, it is proven to be almost
surely convergent to global optima of optimization problems
[34]. CNO approaches are developed for global optimiza-
tion [33]–[36], biconvex optimization [37], multi-objective
optimization [38], [39], and combinatorial and mixed-integer
optimization [33], [40]. CNO is applied for model predictive
control [41], [42], nonnegative matrix factorization [43], multi-
vehicle task assignment [44], [45], feature selection [46],
portfolio selection [47], sparse Bayesian learning [48], spiking
neural network regularization [49], and hash bit selection [50].

In this paper, a CNO algorithm with on Boltzmann machines
is proposed for solving the TSP based on a quadratic uncon-
strained binary optimization (QUBO) problem formulation in
[51]. By leveraging the hill-climbing capability of Boltzmann
machines and the global search capability of CNO, a CNO

325

11th International Conference on Intelligent Control and Information Processing
Dali, China, December 3-7, 2021

978-1-6654-2515-5/21/$31.00 ©2021 IEEE

20
21

 1
1t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
te

lli
ge

nt
 C

on
tro

l a
nd

 In
fo

rm
at

io
n

Pr
oc

es
si

ng
 (I

C
IC

IP
) |

 9
78

-1
-6

65
4-

25
15

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

IC
IP

53
38

8.
20

21
.9

64
22

12

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:03 UTC from IEEE Xplore. Restrictions apply.

algorithm is developed based on Boltzmann machines for
solving the formulated TSP. In the proposed CNO algorithm,
a population of Boltzmann machines is employed for scatter
search, and their initial states are re-initialized repeatedly by
using a particle swarm optimization update rule for reposition-
ing the global search.

The remaining paper is arranged as follows. Section II
provides necessary preliminaries on discrete Hopfield network,
Boltzmann machine, particle swarm optimization, and muta-
tion operation. Section III states formulation and reformulation
of TSP. Section IV details the proposed CNO-TSP algorithm.
Section V discusses experimental results on four benchmark
instances. Section VI concludes this paper.

II. PRELIMINARIES

A. Neurodynamic Model

1) Discrete Hopfield Network (DHN): It consists of binary
or bipolar valued nodes. its neuronal states are activated in
discrete time [14]:

xi(t) = σ(ui(t)) =

{
0 if ui(t) ≤ 0,

1 if ui(t) > 0,
(1)

where x ∈ Rn is the state vector, and u ∈ Rn is the net-input
vector. The net-input vector is updated as follows:

u(t+ 1) = Wx(t)− θ, (2)

where W ∈ Rn×n is the connection weight matrix, and θ ∈
Rn is the threshold vector.

It is shown that the DHN can stable at an equilibrium x̄ (i.e.,
limt→∞ x(t) = x̄) from a initial state, if W = WT , wii = 0,
∀i, and the activation is carried out asynchronously [14].

The DHN [14] is globally convergent to a local minimum
of the following combinatorial optimization problem:

min − 1

2
xTWx+ θTx

s.t. x ∈ {0, 1}n. (3)

The asynchronous activation of the DHN entails a long con-
vergence time. To expedite the convergence of DHNs, several
methods are available to activate neuronal states synchronously
in batches [52]–[55]. A method for activating neurons in
batches (Algorithm 2) is developed for solving the TSP in
[51]. It is shown in [55] that the DHN is globally stable if
the neurons are activated synchronously in batches, where the
neurons in each batch are not directly connected.

2) Boltzmann Machine (BM): It is a well-known stochastic
neural network, and it can be viewed as a generalized Hopfield
network. It is a fully connected network comprising two states.
The neurons are activated simultaneously based on the current
state of their neighbors and the corresponding edges. The
probability of accepting neural transition is defined as follows
[28]: P (xi(t) = 1) = 1

1+e−
u(t)
T

,

P (xi(t) = 0) = 1− P (xi(t) = 1),
(4)

where u(t) is defined as same as in equation (2), T is a
temperature parameter. The temperature is updated according
to exponential multiplicative cooling schedule:

T = T0α
t,

where T0 is a initial temperature and α ∈ [0, 1] is a cooling
rate parameter.

Similar to DHN, BM neurons can also be activated in
batches to expedite the convergence of BM, and its asymp-
totical convergence has been proved in [56].

B. Particle Swarm Optimization (PSO)

It is a stochastic optimization technique. It was motivated by
the intelligent collective behavior of flocks of birds. It is based
on a swarm, and each particle in the swarm keeps changing
the position according to the experience of its own and the
group-best particle.

For each particle, the velocity vi and the position xi(t) are
updated according to its best position x∗

i and the group-best
position x∗:

vi(t+ 1) = c0vi(t) + c1r1(x
∗
i − xi(t))

+c2r2(x
∗ − xi(t)),

xi(t+ 1) = xi(t) + vi(t+ 1),

(5)

where xi ∈ Rn denotes the position vector of the ith

particle, x∗
i denote the best position found by the ith particle

individually, x∗ denote the best position known to the swarm
(solution set), c0 ∈ [0, 1] is an inertia weight, c1 ∈ [0, 1] is a
cognitive learning factor, c2 ∈ [0, 1] is a social learning factor,
and r1, r2 ∈ [0, 1] are two random numbers.

C. Mutation Operation

Mutation operation is an effective method to avoid low
diversity and trapping in local optima. When the diversity
of a swarm is low than a threshold, carrying out a mutation
operation can help the swarm intelligence algorithm escape
local optima. A diversity measurement can be measured by
the following function:

δ(x) =
1

Nn

N∑
i=1

∥x(i) − x∗∥2, (6)

where N and n are respectively the number and dimensions of
solutions, x(i) is the ith solution, and x∗ are the best solution
among the N solutions.

Bit-flip mutation is a common mutation operator for evo-
lutionary algorithms applied to optimization with binary vari-
ables and it is defined in [57]:

xj =

{
¬xj if ξj ≤ Pm,

xj otherwise ,
(7)

where x̄j is the negation of xj , ξj is a random number under
the uniform distribution between [0, 1], Pm is the preset
probability for mutation.

326

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:03 UTC from IEEE Xplore. Restrictions apply.

III. PROBLEM FORMULATIONS

A. Problem Formulation

The TSP can be formulated as a quadratic assignment
problem form [58]:

min
n∑

i=1

n∑
j=1

n∑
l=1,l ̸=j

djlxijxi+1,l, (8a)

s.t.
n∑

i=1

xij = 1, j = 1, ..., n, (8b)

n∑
j=1

xij = 1, i = 1, ..., n, (8c)

xij ∈ {0, 1}, i, j = 1, ..., n. (8d)

where djl denotes the distance between city j and city l, the
distance matrix D = [djl] is symmetric, The objective function
(8a) to be minimized is the total distance of a tour. Constraints
in (8b) ensure that exactly one city is visited once and only
once. Constraints in (8c) ensure that each stop one and only
one city being visited. The constraints in (8d) enforces the
solution to be binary.

B. Problem Reformulation

Let x = [x11, x12, ..., x1n, x21, x22, ..., x2n, ..., xnn]
T ∈

{0, 1}n2

and the problem (8) can be written in a vector form:

min xD̂x, (9a)
s.t. Ax = e, (9b)

where d̂(i−1)n+j,(k−1)n+l = djl when k = i + 1, i =
1, 2, ..., n − 1, and k = 1, i = n, A and e are defined as
follows:

A =

[
I1 I2 · · · In
I I · · · I

]
∈ {0, 1}2n×n2

,

e = {1}2n×1.

To handle the constraints (9b), a quadratic penalty function
is defined:

p(x) =
1

2
∥Ax− e∥22.

Then, a penalized objective function is written:

fρ(x) = f(x) + ρp(x),

where ρ is a penalty parameter.
The original optimization problem (8) is cast into a QUBO

framework via the penalty function:

min fρ(x),

s.t. x ∈ {0, 1}N
2

. (10)

It is known that problems (8) and (10) are equivalent in
terms of their optimal solutions if the penalty parameter is
sufficiently large [59].

The penalized objective function can be simplified to:

fρ(x) = xT D̂x+
ρ

2
∥Ax− e∥22,

= xT D̂x+
ρ

2
((Ax− e)T (Ax− e)),

= xT D̂x+
ρ

2
((xTAT − eT)(Ax− e)),

= xT D̂x+
ρ

2
(xTATAx− xTAT e− eTAx+ eT e),

= xT (D̂ +
ρ

2
ATA)x− ρeTAx+

ρ

2
eT e,

= −1

2
xT (−2D̂ − ρATA)x− ρeTAx+

ρ

2
eT e.

Therefore, the parameters of a DHN or BM are obtained:

W = −2D̂ − ρATA,

θ = −ρeTA.

To guarantee the stability of BM, we have to set wii = 0
according to the aforementioned stability conditions. Since for
a binary variable xi, x2

i = xi. Therefore, the diagonal elements
of W in the equation (2) can always be set to zeros and add
an equivalently linear term diag(w11, . . . , wnn)x. Connection
weight matrix and threshold are rewritten as:

Ŵ = W − diag(W), (11)

θ̂ =
1

2
diag(W)− ρeTA. (12)

The TSP is cast to the problem (3) with Ŵ in equation (11)
and θ̂ in equation (12).

IV. CNO-TSP/BM ALGORITHM

In the proposed algorithm, a population of BMs is employed
in parallel for scatter search, and the PSO update rule is used
for re-initialization of neuronal states. Algorithm 1 details
the proposed CNO procedure to TSP (CNO-TSP/BM). The
equilibrium states are obtained, and the best solution of the ith
BM is updated in steps 2 - 5, where N in step 2 denotes the
number of BMs. Similar to the method for activating neurons
of a DHN in batches in [51], the neurons of a BM in a batch
are activated synchronously in step 3. The group-best solution
is updated in steps 6 - 11. The states of BMs are reinitialized
with PSO update rule in step 14. The diversity of the swarm
is calculated in step 15. A bit-flip mutation is carried out in
steps 16 - 18, where ϵ in step 22 is a diversity threshold. The
CNO-TSP algorithm with a population of DHNs [51] can be
implemented by replacing BM (equation (4)) in step 3 with
DHN (equations (2) and (1)).

V. EXPERIMENTAL RESULTS

A. Setups

In this section, we evaluate the CNO-TSP algorithms on
public available instances BURMA14, ULYSSES16, GR21,
and ULYSSES22 in TSPLIB [60].

In the PSO update rule (5), c0 = 1 and c1 = c2 = 0.2.
In the BM, the cooling rate α = 0.5. ϵ = 0.025. For

327

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: CNO-TSP/BM algorithm
Input: Population size N , termination criteria M ,

initial temperature T0, cooling rate parameter
α, initial states of BMs
[x(1)(0), ..., x(N)(0)] ∈ {0, 1}n2×N , initial
velocity matrix [v(1), ..., v(N)] ∈ [−1, 1]n2×N ,
PSO-based state initialization parameters c0, c1
and c2, diversity threshold ϵ.

Output: x∗.
1 while m ≤M do
2 foreach i to N BMs do
3 Each BM is updated in parallel accroding to

Eq. (4)) with initial state x(i)(0), initial
temperature T0, and cooling rate parameter α;

4 Update the best position x(i), and f(x(i))
found by the ith BM;

5 end
6 i∗ = argmini{f(x(1)), ..., f(x(i)), ..., f(x(N)};
7 if f(x(i∗)) < f(x∗) then
8 m← 0;
9 f(x∗)← f(x(i∗));

10 x∗ ← x(i∗);
11 else
12 m← m+ 1;
13 end
14 Reposition the initial states of a population of BMs

and update velocity by PSO update rule (5);
15 Compute δ(x) according to Eq. (6);
16 if δ(q) < ϵ then
17 Update xi(0) for all i according to Eq. (7);
18 end
19 end
20 return x∗.

performance comparison, the experimental results of the CNO-
TSP algorithm with DHNs [51] (CNO-TSP/DHN) with the
same parameters above are tabulated in the next subsection. All
codes are implemented under Windows 10 (64-bit), Intel(R)
Core(TM) i7-9700K CPU @ 3.60GHz and 64.0GB RAM in
MATLAB R2021b 64-bit.

B. Experimental Results

Fig. 1 snapshots the convergent behaviors of a single
BM, including neuronal states x, objective function f(x),
penalty function p(x) with ρ = 106 on instances BURMA14,
ULYSSES16, GR21, and ULYSSES22. The snapshots show
that BMs are stable at an equilibrium, their penalty func-
tion decreases to zero, and converges to a feasible solu-
tion. Fig. 2 shows the convergent behavior of the CNO-
TSP/BM algorithm on instances BURMA14, ULYSSES16,
GR21, and ULYSSES22. Fig. 3 illustrates the monte Carlo
test results obtained by CNO-TSP algorithms on instances
BURMA14, ULYSSES16, GR21, and ULYSSES22. Figs. 4-
6 depict the optimal tours obtained by CNO-TSP/BM on

instances BURMA14, ULYSSES16, and ULYSSES22, respec-
tively. As coordinates are not provided for GR21, the optimal
tour for this benchmark dataset is not plotted. Table I records
the hyper-parameters, best/worst values, mean values, and
standard deviations achieved by the CNO-TSP/BM algorithm
and the CNO-TSP/DHN algorithm [51] on the four benchmark
instances. It shows that the proposed CNO-TSP/BM algorithm
can find the optimum tour of the four benchmark instances,
and outperforms the CNO-TSP/DHN algorithm [51] on the
four benchmark instances in terms of best, worst, and mean
values of the objective function.

VI. CONCLUDING REMARKS

In this paper, the CNO-TSP/BM algorithm is proposed for
solving the TSP. In the proposed algorithm, a population
of Boltzmann machines is employed. They are activated in
batches to expedite their convergence, and their states are re-
initialized upon their convergence by using the PSO update
rule. The experimental results demonstrate that the proposed
CNO-TSP/BM algorithm outperforms the CNO-TSP/DHN al-
gorithm in terms of solution quality and convergence time.
Further investigations may aim to integrate unsupervised,
supervised, or semi-supervised learning with CNO algorithms
to improve their efficiency and scalability.

REFERENCES

[1] J. Presby and M. Wolfson, “An algorithm for solving job sequencing
problems,” Management Science, vol. 13, no. 8, pp. B–454, 1967.

[2] J. K. Lenstra and A. R. Kan, “Some simple applications of the travel-
ling salesman problem,” Journal of the Operational Research Society,
vol. 26, no. 4, pp. 717–733, 1975.

[3] G. Laporte, “The traveling salesman problem: An overview of exact and
approximate algorithms,” European Journal of Operational Research,
vol. 59, no. 2, pp. 231–247, 1992.

[4] R. Matai, S. P. Singh, and M. L. Mittal, “Traveling salesman problem:
An overview of applications, formulations, and solution approaches,”
Traveling salesman problem, theory and applications, vol. 1, 2010.

[5] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel, “An algorithm
for the traveling salesman problem,” Operations Research, vol. 11, no. 6,
pp. 972–989, 1963.

[6] M. Fischetti, J. J. Salazar González, and P. Toth, “A branch-and-cut
algorithm for the symmetric generalized traveling salesman problem,”
Operations Research, vol. 45, no. 3, pp. 378–394, 1997.

[7] E. Balas and N. Christofides, “A restricted Lagrangean approach to the
traveling salesman problem,” Mathematical Programming, vol. 21, no. 1,
pp. 19–46, 1981.

[8] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II, “An analysis of
several heuristics for the traveling salesman problem,” SIAM Journal on
Computing, vol. 6, no. 3, pp. 563–581, 1977.

[9] M. Gendreau, A. Hertz, and G. Laporte, “New insertion and postop-
timization procedures for the traveling salesman problem,” Operations
Research, vol. 40, no. 6, pp. 1086–1094, 1992.

[10] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic
algorithms for the traveling salesman problem,” in Proceedings of
the first International Conference on Genetic Algorithms and their
Applications, vol. 160, no. 168. Lawrence Erlbaum, 1985, pp. 160–168.

[11] T. Stützle and M. Dorigo, “ACO algorithms for the traveling salesman
problem,” Evolutionary Algorithms in Engineering and Computer Sci-
ence, vol. 4, pp. 163–183, 1999.

[12] R. Baraglia, J. I. Hidalgo, and R. Perego, “A hybrid heuristic for
the traveling salesman problem,” IEEE Transactions on Evolutionary
Computation, vol. 5, no. 6, pp. 613–622, 2001.

[13] K.-P. Wang, L. Huang, C.-G. Zhou, and W. Pang, “Particle swarm
optimization for traveling salesman problem,” in Proceedings of the 2003
International Conference on Machine Learning and Cybernetics, vol. 3.
IEEE, 2003, pp. 1583–1585.

328

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:03 UTC from IEEE Xplore. Restrictions apply.

0 10 20 30 40 50 60 70 80

Inner-loop iteration

0

1

x

0 10 20 30 40 50 60 70 80

Inner-loop iteration

0

0.5

1

1.5

2

2.5

3

f(x
)

105

0 10 20 30 40 50 60 70 80

Inner-loop Iteration

0

20

40

60

80

100

120

140

160

p(
x)

(a) BURMA14

0 10 20 30 40 50 60 70 80

Inner-loop iteration

0

1

x

0 10 20 30 40 50 60 70 80

Inner-loop iteration

0

1

2

3

4

5

6

7

f(x
)

105

0 10 20 30 40 50 60 70 80

Inner-loop Iteration

0

20

40

60

80

100

120

140

160

180

200

220

p(
x)

(b) ULYSSES16

0 20 40 60 80 100

Inner-loop iteration

0

1

x

0 20 40 60 80 100

Inner-loop iteration

0

1

2

3

4

5

6

7

f(x
)

105

0 20 40 60 80 100

Inner-loop Iteration

0

50

100

150

200

250

300

350

p(
x)

(c) GR21

0 20 40 60 80 100 120

Inner-loop iteration

0

1

x

0 20 40 60 80 100 120

Inner-loop iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f(x
)

107

0 20 40 60 80 100 120

Inner-loop Iteration

0

50

100

150

200

250

300

350

400

p(
x)

(d) ULYSSES22

Fig. 1. Snapshots of neuronal states, objective function value and penalty function value of in the CNO-TSP/BM algorithm.

329

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:03 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100

Outer-loop iteration

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

f(x
)

(a) BURMA14 (M = 50 and N = 100)

0 20 40 60 80 100 120 140 160 180

Outer-loop iteration

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

f(x
)

104

(b) ULYSSES16 (M = 100 and N = 300)

0 100 200 300 400 500 600

Outer-loop iteration

3000

4000

5000

6000

7000

8000

f(x
)

(c) GR21 (M = 200 and N = 2600)

0 50 100 150 200 250 300 350 400

Outer-loop iteration

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f(x
)

104

(d) ULYSSES22 (M = 200 and N = 3000)

Fig. 2. The convergent behavior of the CNO-TSP/BM algorithm on the four instances.

TABLE I
HYPER-PARAMETERS AND RESULTS OF CNO-TSP/DHN AND CNO-TSP/BM IN TERMS OF BEST/WORST VALUES, MEAN VALUES, AND STANDARD DEVIATIONS

ON THE FOUR BENCHMARK INSTANCES

data set # of cities # of solutions optimum # of neurons # of batches algorithm N M best/worst mean ± std

BURMA14 14 8.7× 1010 3323 196 29
CNO-TSP/DHN 100 50 3668/4352 4085.72 ± 193.21
CNO-TSP/BM 100 50 3323/4097 3860.56 ± 154.95

ULYSSES16 16 2.1× 1013 6859 256 33
CNO-TSP/DHN 300 100 7400/8822 8296.92 ± 299.55
CNO-TSP/BM 300 100 6859/8100 7739.64 ± 295.78

GE21 21 5.1× 1019 2707 441 43
CNO-TSP/DHN 2600 200 4121/4723 4418.23 ± 196.48
CNO-TSP/BM 2600 200 2707/3989 3833.24 ± 257.12

ULYSSES22 22 1.1× 1021 7013 484 45
CNO-TSP/DHN 3000 200 9000/10287 9774.12 ± 352.90
CNO-TSP/BM 3000 200 7013/9237 8817.64 ± 457.69

[14] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proceedings of the National Academy

330

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:03 UTC from IEEE Xplore. Restrictions apply.

N
=

1

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

N = 10 N = 50 N = 100 N = 200 N = 300

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

f(
x)

(a) CNO-TSP/DHN BURMA14

N
=

1

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

N = 10 N = 20 N = 50 N = 100 N = 200

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

f(
x)

(b) CNO-TSP/BM BURMA14

N
=

1

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

N = 10 N = 100 N = 300 N = 400 N = 500

0.6

0.8

1

1.2

1.4

1.6

f(
x)

#104

(c) CNO-TSP/DHN uylsses16

N
=

1

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

M
=

10 20 50 10
0

20
0

N = 10 N = 100 N = 200 N = 300 N = 400

0.6

0.8

1

1.2

1.4

1.6

f(
x)

#104

(d) CNO-TSP/BM ULYSSES16

N
=

1

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

N = 100 N = 1000 N = 2000 N = 2500 N = 2600

3000

4000

5000

6000

7000

8000

9000

f(
x)

(e) CNO-TSP/DHN GR21

N
=

1

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

N = 100 N = 1000 N = 2000 N = 2500 N = 2600

3000

4000

5000

6000

7000

8000

9000

f(
x)

(f) CNO-TSP/BM GR21

N
=

1

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

N = 10 N = 1000 N = 2000 N = 2500 N = 3000

0.6

0.8

1

1.2

1.4

1.6

1.8

f(
x)

#104

(g) CNO-TSP/DHN ULYSSES22

N
=

1

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

N = 10 N = 1000 N = 2000 N = 2500 N = 3000

0.6

0.8

1

1.2

1.4

1.6

1.8

f(
x)

#104

(h) CNO-TSP/BM ULYSSES22

Fig. 3. Monte Carlo test results of the CNO-TSP algorithms with several M and N on the four instances.

of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[15] ——, “Neurons with graded response have collective computational
properties like those of two-state neurons,” Proceedings of the National
Academy of Sciences, vol. 81, no. 10, pp. 3088–3092, 1984.

[16] D. W. Tank and J. J. Hopfield, “Simple ‘neural’optimization networks:
an A/D converter, signal decision circuit, and a linear programming
circuit,” IEEE Trans. Circuits and Systems, vol. 33, no. 5, pp. 533–541,
1986.

331

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:03 UTC from IEEE Xplore. Restrictions apply.

1.55 1.6 1.65 1.7 1.75

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Fig. 4. The optimal tour of the dataset BURMA14 achieved by using the
CNO-TSP/BM algorithm with M = 50 and N = 100.

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Fig. 5. The optimal tour of the dataset ULYSSES16 achieved by using the
CNO-TSP/BM algorithm with M = 100 and N = 300.

[17] J. J. Hopfield and D. W. Tank, “Neural computation of decisions in
optimization problems,” Biological Cybernetics, vol. 52, no. 3, pp. 141–
152, 1985.

[18] ——, “Computing with neural circuits: a model,” Science, vol. 233, no.
4764, pp. 625–633, 1986.

[19] P. M. Talaván and J. Yáñez, “Parameter setting of the Hopfield network
applied to TSP,” Neural Networks, vol. 15, no. 3, pp. 363–373, 2002.

[20] K. C. Tan, H. Tang, and S. S. Ge, “On parameter settings of Hopfield
networks applied to traveling salesman problems,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 52, no. 5, pp. 994–1002,
2005.

[21] J. Wang, “Analysis and design of a recurrent neural network for linear
programming,” IEEE Trans. Circuits and Systems: Part I, vol. 40, no. 9,
pp. 613–618, 1993.

[22] ——, “A deterministic annealing neural network for convex program-
ming,” Neural Networks, vol. 7, no. 4, pp. 629–641, 1994.

[23] Q. Liu and J. Wang, “A one-layer recurrent neural network with
a discontinuous activation function for linear programming,” Neural
Computation, vol. 20, no. 5, pp. 1366–1383, 2008.

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Fig. 6. The optimal tour of the dataset ULYSSES22 achieved by using the
CNO-TSP/BM algorithm with M = 200 and N = 3000.

[24] Z. Guo, Q. Liu, and J. Wang, “A one-layer recurrent neural network for
pseudoconvex optimization subject to linear equality constraints,” IEEE
Transactions on Neural Networks, vol. 22, no. 12, pp. 1892–1900, 2011.

[25] A. Hosseini, J. Wang, and S. M. Hosseini, “A recurrent neural network
for solving a class of generalized convex optimization problems,” Neural
Networks, vol. 44, pp. 78–86, 2013.

[26] G. Li, Z. Yan, and J. Wang, “A one-layer recurrent neural network for
constrained nonconvex optimization,” Neural Networks, vol. 61, pp. 10–
21, 2015.

[27] Y. Xia and J. Wang, “A bi-projection neural network for solving
constrained quadratic optimization problems,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 27, no. 2, pp. 214–224,
2016.

[28] G. E. Hinton and T. J. Sejnowski, “Optimal perceptual inference,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1983, pp. 448–453.

[29] V. Zissimopoulos, V. T. Paschos, and F. Pekergin, “On the approximation
of NP-complete problems by using the Boltzmann machine method: the
cases of some covering and packing problems,” IEEE Transactions on
Computers, vol. 40, no. 12, pp. 1413–1418, 1991.

[30] J. H. Korst and E. H. Aarts, “Combinatorial optimization on a Boltzmann
machine,” Journal of Parallel and Distributed Computing, vol. 6, no. 2,
pp. 331–357, 1989.

[31] E. H. Aarts and J. H. Korst, “Boltzmann machines for travelling
salesman problems,” European Journal of Operational Research, vol. 39,
no. 1, pp. 79–95, 1989.

[32] M. Peng, N. K. Gupta, and A. F. Armitage, “An investigation into
the improvement of local minima of the Hopfield network,” Neural
Networks, vol. 9, no. 7, pp. 1241–1253, 1996.

[33] H. Che and J. Wang, “A collaborative neurodynamic approach to global
and combinatorial optimization,” Neural Networks, vol. 114, pp. 15 –
27, 2019.

[34] Z. Yan, J. Fan, and J. Wang, “A collective neurodynamic approach to
constrained global optimization,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 28, no. 5, pp. 1206–1215, 2017.

[35] Z. Yan, J. Wang, and G. Li, “A collective neurodynamic optimization ap-
proach to bound-constrained nonconvex optimization,” Neural Networks,
vol. 55, pp. 20–29, 2014.

[36] J. Wang and J. Wang, “Two-timescale multilayer recurrent neural
networks for nonlinear programming,” IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[37] H. Che and J. Wang, “A two-timescale duplex neurodynamic approach
to biconvex optimization,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 8, pp. 2503–2514, 2019.

[38] M.-F. Leung and J. Wang, “A collaborative neurodynamic approach to

332

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:03 UTC from IEEE Xplore. Restrictions apply.

multiobjective optimization,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 11, pp. 5738 – 5748, 2018.

[39] S. Yang, Q. Liu, and J. Wang, “A collaborative neurodynamic approach
to multiple-objective distributed optimization,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 4, pp. 981–992,
April 2018.

[40] H. Che and J. Wang, “A two-timescale duplex neurodynamic approach
to mixed-integer optimization,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 32, no. 1, pp. 36–48, 2021.

[41] Z. Yan and J. Wang, “Nonlinear model predictive control based on
collective neurodynamic optimization,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 26, no. 4, pp. 840–850, 2015.

[42] J. Wang, J. Wang, and Q. Han, “Neurodynamics-based
model predictive control of continuous-time under-actuated
mechatronic systems,” IEEE/ASME Transactions on Mechatronics,
vol. 26, no. 1, pp. 311–321, Jan. 2021. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9167474

[43] J. Fan and J. Wang, “A collective neurodynamic optimization approach
to nonnegative matrix factorization,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 10, pp. 2344–2356, 10
2017.

[44] J. Wang, J. Wang, and H. Che, “Task assignment for multivehicle
systems based on collaborative neurodynamic optimization,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 4,
pp. 1145–1154, 2020.

[45] J. Wang, J. Wang, and Q. Han, “Multi-vehicle task assignment based
on collaborative neurodynamic optimization with discrete Hopfield net-
works,” IEEE Transactions on Neural Networks and Learning Systems,
2021, doi=10.1109/TNNLS.2021.3082528, in press.

[46] Y. Wang, J. Wang, , and H. Che, “Two-timescale neurodynamic ap-
proaches to supervised feature selection based on alternative problem
formulations,” Neural Networks, vol. 142, pp. 180–191, Oct. 2021.

[47] M. Leung and J. Wang, “Minimax and biobjective portfolio selection
based on collaborative neurodynamic optimization,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 7, pp. 2825–
2836, Jul. 2021.

[48] W. Zhou, H.-T. Zhang, and J. Wang, “Sparse Bayesian learning based
on collaborative neurodynamic optimization,” IEEE Transactions on
Cybernetics, pp. 1–15, 2021.

[49] J. Zhao, J. Yang, J. Wang, and W. Wu, “Spiking neural network
regularization with fixed and adaptive drop-keep probabilities,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–14, 2021.

[50] X. Li, J. Wang, and S. Kwong, “Hash bit selection via collabo-
rative neurodynamic optimization with discrete Hopfield networks,”
IEEE Transactions on Neural Networks and Learning Systems, 2021,
doi=10.1109/TNNLS.2021.3068500, in press.

[51] H. Li, J. Wang, and J. Wang, “Solving the travelling salesman problem
based on collaborative neurodynamic optimization with discrete Hop-
field networks,” in 2021 11th International Conference on Information
Science and Technology (ICIST). IEEE, 2021, pp. 456–465.

[52] E. Goles-Chacc, F. Fogelman-Soulié, and D. Pellegrin, “Decreasing
energy functions as a tool for studying threshold networks,” Discrete
Applied Mathematics, vol. 12, no. 3, pp. 261–277, 1985.

[53] B. Cernuschi-Frı́as, “Partial simultaneous updating in Hopfield memo-
ries,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 19,
no. 4, pp. 887–888, 1989.

[54] D.-L. Lee, “New stability conditions for Hopfield networks in partial
simultaneous update mode,” IEEE Transactions on Neural Networks,
vol. 10, no. 4, pp. 975–978, 1999.

[55] J. Muñoz-Pérez, A. Ruiz-Sepúlveda, and R. Benı́tez-Rochel, “Paral-
lelism in binary hopfield networks,” in Advances in Computational
Intelligence, J. Cabestany, I. Rojas, and G. Joya, Eds. Springer Berlin
Heidelberg, 2011, pp. 105–112.

[56] E. H. Aarts and J. H. Korst, “Boltzmann machines as a model for parallel
annealing,” Algorithmica, vol. 6, no. 1, pp. 437–465, 1991.

[57] Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary PSO with mutation
operator for feature selection using decision tree applied to spam
detection,” Knowledge-Based Systems, vol. 64, pp. 22–31, 2014.

[58] J. Wang, “A deterministic connectionist machine for the traveling
salesman problem,” in Proc. IEEE International Conference on Systems,
Man and Cybernetics. IEEE, 1990, pp. 374–375.

[59] G. A. Kochenberger, F. Glover, B. Alidaee, and C. Rego, “A unified
modeling and solution framework for combinatorial optimization prob-
lems,” OR Spectrum, vol. 26, no. 2, pp. 237–250, 2004.

[60] G. Reinelt, “TSPLIB—a traveling salesman problem library,” ORSA
Journal on Computing, vol. 3, no. 4, pp. 376–384, 1991.

333

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:03 UTC from IEEE Xplore. Restrictions apply.

