
Collaborative Neurodynamic Algorithms
for Solving Sudoku Puzzles
Hongzong Li

Department of Computer Science
City University of Hong Kong

Kowloon, Hong Kong
hongzli2-c@my.cityu.edu.hk

Jun Wang
Department of Computer Science
& School of Data Science
City University of Hong Kong

Kowloon, Hong Kong
jwang.cs@cityu.edu.hk

Abstract—In this article, Sudoku is formulated as a quadratic
unconstrained binary optimization, and a variables reduction
algorithm is proposed based on given elements. Collabora-
tive neurodynamic optimization algorithms based on discrete
Hopfield networks or Boltzmann machines are developed for
solving the formulated optimization problem. A population of
discrete Hopfield networks or Boltzmann machines operating
concurrently are employed for scatter search. A particle swarm
optimization rule is used to re-initialize the initial states of
discrete Hopfield networks or Boltzmann machines upon their
local convergence. Experimental results on five Sudoku instances
are elaborated to demonstrate the efficacy of the proposed
collaborative neurodynamic optimization algorithms for solving
Sudoku puzzles.

Index Terms—Sudoku, discrete Hopfield network, Boltzmann
machine, collaborative neurodynamic optimization.

I. INTRODUCTION

Sudoku is a well-known logical puzzle game that was first
published in 1979. It is presented with a 9 9 grid, where some
of the cells contain integers between 1 and 9. The task is to fill
the remaining cells to satisfy that each row, each column, and
each 3 3 box contains the integers from 1 to 9 exactly once. It
has various applications, such as secret digits embedding [1],
photovoltaic array reconfiguration [2], and secret data hiding
[3].

Sudoku is NP-complete [4], so numerous heuristic methods
and meta-heuristic methods are developed for solving Sudoku.
Heuristic methods include harmony search [5], Sinkhorn bal-
ancing algorithm [6], nested Monte Carlo search [7], entropy
minimization [8], Monte Carlo search algorithm [9], back-
tracking algorithm with heuristic moves [10], set selection
neural networks with partial memories [11], memetic coloring
algorithm [12], etc. Meta-heuristic methods genetic algorithm
[13], simulated annealing [14], tabu search with an arc-
consistency 3 algorithm [15], integer-value particle swarm
optimization [16], hybrid genetic algorithm [17], ant colony
optimization [18], etc.

Various neurodynamic optimization models, such as Hop-
field networks [19]–[22] and projection neural networks [23]–

This work was supported in part by the Research Grants Council of the
Hong Kong Special Administrative Region of China under Grants 11202318,
11202019, and 11203721; and in part by the InnoHK initiative, the Govern-
ment of the Hong Kong Special Administrative Region, and Laboratory for
AI-Powered Financial Technologies.

[29] have been developed to solve numerous optimization
problems. Unlike these deterministic neurodynamic optimiza-
tion models, the Boltzmann machine is a stochastic neural
network [30] with a local hill-climbing capability for solving
combinatorial optimization problems [31], [32]. The Boltz-
mann machines are developed for solving various combinato-
rial optimization [31]–[34]. Although the Boltzmann machine
has been proved that it almost surely convergent to global
optima, it entails a sufficient long cooling schedule.

It is well known that a single gradient-driven neurodynamic
model easily gets stuck in a local optimum when facing
combinatorial optimization problems with binary variables
[35]. In such scenarios, multiple neurodynamic models are
needed to work collaboratively in order to achieve the task.
Collaborative neurodynamic optimization (CNO) is a hybrid
intelligence framework that has been developed for solving
combinatorial optimization problems in recent years [36]
With multiple neurodynamic optimization models for scattered
searches and a meta-heuristic rule to initialize the neuronal
states upon neuronal search convergence, CNO is proven to
be almost surely convergent to global optima of optimization
problems [37]. In recent years, the CNO approach shows
its admirable searching performance in numerous complex
optimization problems, including global optimization [36]–
[39], multi-objective optimization [40], [41], biconvex opti-
mization [42], and combinatorial and mixed-integer optimiza-
tion [36], [43]. CNO is customized in various applications,
such as traveling salesman problem [22], [34], multi-vehicle
task assignment [44], [45], model predictive control [46],
[47], portfolio selection [48], hash bit selection [49], feature
selection [50], nonnegative matrix factorization [51], [52], and
spiking neural network regularization [53], etc.

In this article, Sudoku is formulated as a quadratic un-
constrained binary optimization, and its variables are reduced
based on given elements. The formulated problem is solved
by CNO algorithms employing multiple discrete Hopfield
networks or Boltzmann machines with momentum terms to
search global optima collaboratively. In the proposed CNO
algorithms, a population of discrete Hopfield networks or
Boltzmann machines with momentum terms are employed for
scatter search. Discrete Hopfield networks and Boltzmann ma-
chines with momentum terms are operated in fully parallel for

8

12th International Conference on Information Science and Technology (ICIST 2022) 
Kaifeng, China, October 14-16, 2022

978-1-6654-8582-1/22/$31.00 ©2022 IEEE

20
22

 1
2t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 In
fo

rm
at

io
n 

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
 (I

CI
ST

) |
 9

78
-1

-6
65

4-
85

82
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
IS

T5
55

46
.2

02
2.

99
26

96
1

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:25:41 UTC from IEEE Xplore.  Restrictions apply. 



expediting their convergence. A particle swarm optimization
rule is used to re-initialize the initial states of discrete Hopfield
networks or Boltzmann machines upon their local convergence
to escape from local minima toward global minima.

The remainder of this article is organized as follows. In
Section II, necessary preliminaries on discrete Hopfield net-
work, Boltzmann machine, and collaborative neurodynamic
optimization are introduced. In Section III, the formulation
and reformulation of Sudoku are described. In Section IV,
the proposed CNS/BMm and CNS/DHNm algorithms are
delineated. In Section V, experimental results on five instances
are discussed in detail. Finally, in Section VI, the concluding
remarks are given.

II. PRELIMINARIES

A. Neurodynamic Optimization

1) Discrete Hopfield Network: The discrete Hopfield net-
work (DHN) is a classic recurrent neural network operating
with binary or bipolar states and activation function in discrete
time [54] as follows:

u(t) = Wx(t)− θ, (1)
x(t+ 1) = σ(u(t)), (2)

where u ∈ R
n is the net-input vector, x ∈ R

n is the state
vector, W ∈ Rn×n is the connection weight matrix, θ ∈ Rn is
the threshold vector, and σ(·) is a vector-valued discontinuous
activation function defined element-wisely as follows:

xi(t+ 1) = σ(ui) =

{
0 if ui(t) ≤ 0,

1 if ui(t) > 0.

As a variant of the DHN, a DHN with a momentum term
(DHNm) [55] is developed as follows:{

u(t+ 1) = u(t) +Wx(t)− θ,

x(t) = σ(u(t)),
(3)

where u(0) = 0.
With the addition of the momentum term u(t − 1) in the

DHN dynamic equation, the DHNm in (3) takes its historical
effect into account and enriches its dynamic behaviors. It is
shown that all neuronal states in the DHNm in (3) can be
activated synchronously and are convergent to local or near
optima [56], [57].

It is shown in [54] that the DHN is convergent to a
local minimum of the following combinatorial optimization
problem:

min − 1

2
xTWx+ θTx s.t. x ∈ {0, 1}n. (4)

2) Boltzmann Machine: The Boltzmann machine (BM) is
a well-known stochastic neural network, and each state xi is
updated synchronously according to an acceptance probability
[30]:

P (xi(t) = 1) = 1/(1 + exp(−u(t)/T (t))), (5)

where T (t) is a positive temperature parameter at iteration t
that is updated as follows:

T = T0η
t,

where T0 is an initial temperature and 0 < η < 1 is a cooling
factor.

In analogy to DHNm, a BM with a momentum term (BMm)
is developed as follows:⎧⎪⎨⎪⎩

u(t+ 1) = u(t) +Wx(t)− θ,

p(xi(t) = 1) = 1/(1 + exp(−ui(t)/T )),

p(xi(t) = 0) = 1− p(xi(t) = 1).

(6)

3) Collaborative Neurodynamic Optimization: The neuro-
dynamic models used in existing CNO approaches include
projection neural networks [40], [44], [46]–[48], [51], [52],
discrete Hopfield networks (2) [22], [45], [49], and Boltzmann
machine (5) [34]. Almost all of the CNO algorithms use a
particle swarm optimization rule as defined in [58]:⎧⎪⎨⎪⎩

vi(t+ 1) = c0vi(t) + c1r1(x
∗
i − xi(t))

+c2r2(x
∗ − xi(t)),

xi(t+ 1) = xi(t) + vi(t+ 1),

(7)

where xi is the current position of the ith particle, vi ∈ R is a
velocity determining the searching direction of the ith particle,
x∗i is the current best position of the ith particle, x∗ is the
current best position of a group (solution set), c0 ∈ [0, 1] is an
inertia weight determining the weight of the previous velocity,
c1 ∈ [0, 1] is a cognitive learning factor, c2 ∈ [0, 1] is a social
learning factor, and r1, r2 ∈ [0, 1] are two random numbers.

The diversity of the particles is crucial for searching.
Mutation operation is a frequently-used method to enhance
diversity and avoid premature convergence. A diversity of a
group is measured as follows:

δ(x) =
1

Nn

N∑
i=1

‖x(i) − x∗‖2, (8)

where N is the population size of the swarm, n is the
dimension of a solution, x(i) is the ith particle, and x∗ is
the current best solution of the whole population.

The bit-flip mutation is a typical mutation operator for
evolutionary algorithms applied to optimization with binary
variables as defined in [59]:

xj =

{
¬xj if κ ≤ Pm,

xj otherwise ,
(9)

where ¬xj is the negation of xj , κ ∈ [0, 1] is a random
number, Pm is the probability of mutation.

9

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:25:41 UTC from IEEE Xplore.  Restrictions apply. 



III. PROBLEM FORMULATION

Consider a binary formulation [60] of Sudoku puzzles in
the following form:

n∑
k=1

xijk = 1, i, j = 1, ..., n, (10a)

n∑
i=1

xijk = 1, j, k = 1, ..., n, (10b)

n∑
j=1

xijk = 1, i, k = 1, ..., n, (10c)

√
np∑

i=
√
n(p−1)+1

√
nq∑

j=
√
n(q−1)+1

xijk = 1,

p, q = 1, ...,
√
n, k = 1, ..., n, (10d)

xijk = 1, ∀(i, j, k) ∈ G, (10e)
xijk ∈ {0, 1}, (10f)

where n is a size of a Sodoku puzzle (commonly, n = 9),√
n is the size of a block. xijk is a decision variable such that

xijk = 1 means that the cell in ith row and jth column is set
to be k and xijk = 0 otherwise, G denotes a set of binary-
coded elements that are given. Constraints in (10a) ensure that
every cell of a completed Sudoku grid is filled. Constraints in
(10b) ensure that each column of a completed Sudoku grid
contains each of 1 to n exactly once. Constraints (10c) ensure
that each row of a completed Sudoku grid contains each of 1
to n exactly once. Constraints (10d) ensure that each m×m
block of a completed Sudoku grid contains each of 1 to n
exactly once. Constraints (10e) enforce the given elements G.
Constraints (10f) enforce the solution to be binary.

In the view that X = [xijk] is a 3-order tensor, the tensor
X is vectorized to facilitate the following description. The
vectorized decision variables are stated as follows:

x̄ = vec(X T2) = [x111, x112, x113, · · ·, x997, x998, x999] ∈ {0, 1}n
3

,

where (·)T2 is the second transpose of tensor, which means
X T2(i3, i2, i1) = X (i1, i2, i3) for a 3-order tensor.

The constraint satisfaction problem can be re-formulated as
an unconstrained problem by introducing a quadratic penalty
function into the objective function as an alternative to impos-
ing constraints. To handle constraints (10a)-(10e), quadratic

penalty terms are defined as follows:

pa(x̄) =
1

2

n∑
i=1

n∑
j=1

( n∑
k=1

xijk − 1
)2

=
1

2
‖Aax̄− en2‖22,

(11a)

pb(x̄) =
1

2

n∑
j=1

( n∑
i=1

n∑
k=1

xijk − 1
)2

=
1

2
‖Abx̄− en2‖22,

(11b)

pc(x̄) =
1

2

n∑
i=1

( n∑
j=1

n∑
k=1

xijk − 1
)2

=
1

2
‖Acx̄− en2‖22,

(11c)

pd(x̄) =
1

2

√
n∑

p=1

√
n∑

q=1

( √
np∑

i=
√
n(p−1)+1

√
nq∑

j=
√
n(q−1)+1

n∑
k

xijk − 1
)2

=
1

2
‖Adx̄− en2‖22,

(11d)

where

Aa =

⎡⎢⎢⎢⎣
eTn 0 · · · 0
0 eTn · · · 0
...

...
. . .

...
0 0 · · · eTn

⎤⎥⎥⎥⎦ ∈ {0, 1}n2×n3

,

Ab =

⎡⎢⎢⎢⎣
In 0 · · · 0
0 In · · · 0
...

...
. . .

...
0 0 · · · In

⎤⎥⎥⎥⎦ ∈ {0, 1}n2×n3

,

Ac =
[
In2 In2 · · · In2

]
∈ {0, 1}n2×n3

,

Ad =

⎡⎢⎣Ĩ Ĩ Ĩ 0 0 0 0 0 0

0 0 0 Ĩ Ĩ Ĩ 0 0 0

0 0 0 0 0 0 Ĩ Ĩ Ĩ

⎤⎥⎦ ∈ {0, 1}n2×n3

,

Ĩ =

⎡⎣In In In 0 0 0 0 0 0
0 0 0 In In In 0 0 0
0 0 0 0 0 0 In In In

⎤⎦ ∈ {0, 1}3n×n2

,

In = [In, In, ..., In]︸ ︷︷ ︸
n

, en = [1, 1, ..., 1]︸ ︷︷ ︸
n

T
,

In is an n× n identity matrix.
For constraints in (10e), the given binary-coded elements

can be substituted in (11) to reduce the number of variables.
For a given binary coded element xigjgkg , xigjgkg = 1 and
xigjgk = 0, k �= kg; e.g., in Fig. 1, x114 = 1, and x11k = 0,
where k �= 4. Besides that, variables xijkg with the same
column, row, or sub-grid, and the same kg with given binary
coded elements should be 0; e.g., in Fig. 1, x124 = 0, and
x121 = 0. The algorithm of variable reduction is detailed in
the next chapter.

10

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:25:41 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. A Sudoku puzzle instance with given decimal-coded elements.

With the quadratic penalty terms to be minimized, a penalty
function is defined as follows:

p(x̄) = pb(x̄) + pc(x̄) + pd(x̄) + pe(x̄), (12)

where x̄ ∈ {0, 1}n.
Based on the penalty function in (12), the original problem

in (10) is expressed as follows:

min
x̄

p(x̄), s.t. x̄ ∈ {0, 1}n. (13)

IV. CNS ALGORITHMS

Algorithm 1 details the variable reduction method. The
every given variables xigjgkg (i.e., (ig, jg, kg) ∈ G) is set to
1, and xigjgk (i.e., (ig, jg, k) /∈ G) is set to 0 in steps 5-15,
where δi is a flag such that δi = 1 denotes the ith variable
is fixed, and δi = 0 otherwise. The not-given variables that
have the same row and k with given variables are set to 0
in steps 17-20. The not-given variables that have the same
column and k with given variables are set to 0 in steps 21-
24. The not-given variables that have the same sub-grid and k
with given variables are set to 0 in steps 25-30. If an element
that is not given has a unique k in a row, column, or sub-grid,
the element can be fixed at k and it is described in steps 32-
37. The dimensions of matrix Aa, Ab, Ac, and Ad are reduced
according to δ and S in steps 39-49. If δi = 0, then the variable
x̄i is fixed and can reduced. Therefore, the reduced variables
x̂ are attained.

The quadratic penalty terms in (11) are redefined with
reduced variables x̂ as follows:

pb(x̂) =
1

2
‖Âbx̂− bb‖22, pc(x̂) =

1

2
‖Âcx̂− bc‖22,

pd(x̂) =
1

2
‖Âdx̂− bd‖22, pe(x̂) =

1

2
‖Âex̂− be‖22.

Algorithm 1: Variable reduction
Input: Aa, Ab, Ac, Ad.
Output: Âa, Âb, Âc, Âd, ba, bb, bc, bd, δ.

1 δ ← 0n
3

;
2 s← 0n

3

;
3 Δ← 1;
4 while Δ = 1 do
5 foreach (ig, jg, kg) ∈ G do
6 for k = 1 to n do
7 if k �= kg then
8 sig×n2+jg×n+k ← 0;
9 δig×n2+jg×n+k ← 1;

10 else
11 sig×n2+jg×n+k ← 1;
12 δig×n2+jg×n+k ← 1;
13 end
14 end
15 end
16 foreach (ie, je, ke) /∈ G do
17 foreach (ie, c, k) ∈ G do
18 sie×n2+c×n+k ← 0;
19 δie×n2+c×n+k ← 1;
20 end
21 foreach (r, je, k) ∈ G do
22 sr×n2+je×n+k ← 0;
23 δr×n2+je×n+k ← 1;
24 end
25 foreach elements (i, j) in the sub-grid where

(ie, je) is in located do
26 if (i, k, k) ∈ G then
27 sie×n2+je×n+k ← 0;
28 δie×n2+je×n+k ← 1;
29 end
30 end
31 end
32 if A element (i, j) that is not given has a unique k in

a row, column, or sub-grid then
33 add (i, j, k) of the element to G;
34 Δ← 1
35 else
36 Δ← 0
37 end
38 end
39 ba = en2 −Aas;
40 bb = en2 −Abs;
41 bc = en2 −Acs;
42 bd = en2 −Ads;
43 foreach i ∈ {i|δi = 1} do
44 delete the ith column of Aa, Ab, Ac, and Ad;
45 end
46 Âa ← Aa;
47 Âb ← Ab;
48 Âc ← Ac;
49 Âd ← Ad;
50 return Âa, Âb, Âc, Âd, ba, bb, bc, bd.

11

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:25:41 UTC from IEEE Xplore.  Restrictions apply. 



A CNO procedure to Sudoku (CNS-BMm) is detailed in
Algorithm 2. A population of BMms is employed in Steps 2 -
7 for scattered searches, where N in Step 2 is the population
size of BMms. The best solution in the BMms is determined
in Steps 9 - 12. The initial states of BMms are re-positioned
with particle swarm optimization update rule in Steps 15 - 20,
where U(0, 1) in Step 16 denotes a random number between
zero and one, and P[0,1](x) in Step 18 denotes a projection
function with image [0, 1]. The diversity is measured in Step
21. A bit-flip mutation is performed if the diversity measure is
smaller than the threshold T in Steps 22 - 24. The CNS/DHNm
algorithm with a population of DHNms can be implemented
by replacing BMm (6) in Step 3 with DHNm (3).

Algorithm 2: CNS/BMm algorithm
Input: Number of neurodynamic models N , initial states

x(i)(0) ∈ {0, 1}n2

, i = 1, ..., N , velocity vector
v(i) ∈ [−1, 1]n

2

, i = 1, ..., N , initial temperature
T0, cooling rate η, termination criterion M ,
parameters of particle swarm optimization rule c0,
c1 and c2, diversity threshold T .

Output: x∗.
1 while m ≤M do
2 for i = 1 to N do
3 Obtain the equilibrium state x̄(i) of the ith BMm

acorrding to eq. (6)) with initial state x(i)(0),
initial temperature T0, and cooling factor η;

4 if f(x̄(i)) < f(x(i)) then
5 x(i) ← x̄(i);
6 end
7 end
8 i∗ = argmini{f(x(1)), ..., f(x(i)), ..., f(x(N)};
9 if f(x(i

∗)) < f(x∗) then
10 x∗ ← x(i

∗);
11 m← 0;
12 else
13 m← m+ 1;
14 end
15 for i = 1 to N do
16 Update velocity v(i) = c0v

(i) + c1U(0, 1)(x(i) −
x̄(i)) + c2U(0, 1)(x∗ − x̄(i));

17 Update initial state x(i)(0) = x(i)(0) + v(i);
18 x(i)(0) = P[0,1](x

(i)(0));
19 x(i)(0) = round(x(i)(0));
20 end
21 Calculate the diversity of the swarm δ according to

Eq. (8);
22 if δ < T then
23 Perform the bit-flip mutation according to Eq. (9);
24 end
25 end
26 return x∗.

V. EXPERIMENTAL RESULTS

Instances are selected based on previously used in the
literature. Consider the ten instances used in [61] (labeled
here Sabuncu1-Sabuncu10) that are all logically solvable.
The variable reduction (Algorithm 1) is carried out before
optimization. Table I records the number of variables after
variable reduction. The number of variables before reduction is
n3 = 729 and can be reduced to 0%−28% by using Algorithm
1. In particular, Sabuncu1, Sabuncu2, Sabuncu5, Sabuncu8,
and Sabuncu10 can be solved directly by Algorithm 1.

TABLE I
THE NUMBER OF VARIABLES AFTER VARIABLE REDUCTION

Instance # of remaining variables
Sabuncu1 0
Sabuncu2 0
Sabuncu3 171
Sabuncu4 95
Sabuncu5 0
Sabuncu6 209
Sabuncu7 168
Sabuncu8 0
Sabuncu9 163
Sabuncu10 0

Fig. 2 snapshots the transient states of a single BMm and
corresponding penalty function values on Sabuncu3, Sabun-
cu4, Sabuncu6, Sabuncu7, and Sabuncu9. Fig. 3 depicts the
convergent behavior of the CNS/BMm algorithm on Sabuncu3,
Sabuncu4, Sabuncu6, Sabuncu7, and Sabuncu9. Fig. 9 illus-
trates monte Carlo test results on the instances using CNS
algorithms. When the Sudoku is solved in all 100 runs by two
CNS algorithms, N in CNS/BMm is much smaller than that
in CNS/DHNm owning to the local hill-climbing capability of
BMm. Table II records the solution dimensions of the datasets,
the number of solutions, hyper-parameter values, and results
of CNS/DHNm and CNS/BMm in terms of best/worst values,
mean values, and standard deviations on the five instances.
Figs. 4-8 show the feasible solutions obtained by variable
reduction algorithm (Algorithm 1) and CNS/BMm (Algorithm
2) on instances Sabuncu3, Sabuncu4, Sabuncu6, Sabuncu7,
and Sabuncu9, respectively. The left boards are before variable
reduction, where the red cells indicate that it is a given cell,
and the white cells indicate that they are not fixed (the numbers
in it are allowable numbers). The middle boards are after
variable reduction, where the blue cells are fixed after variable
reduction. The number of allowable numbers in white cells is
much smaller after variable reduction. The right boards are the
results obtained by using the CNS/BMm algorithm, where the
green cells are the cell solved by the CNS/BMm algorithm.

VI. CONCLUDING REMARKS

In this article, Sudoku is formulated as a quadratic uncon-
strained binary optimization problem. A variable reduction al-
gorithm is proposed to reduce the number of variables with the
information in known cells. Two collaborative neurodynamic
Sudoku algorithms are developed based on a population of
discrete Hopfield networks and Boltzmann machines activated
synchronously. The performance of the proposed algorithms is

12

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:25:41 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Feasible results obtained by using the proposed variables reduction and CNS/BMm algorithm on Sabuncu3.

Fig. 5. Feasible results obtained by using the proposed variables reduction and CNS/BMm algorithm on Sabuncu4.

TABLE II
THE SOLUTION DIMENSIONS OF THE DATASETS, THE NUMBER OF SOLUTIONS, HYPER-PARAMETER VALUES, AND
RESULTS OF CNS/DHNM AND CNS/BMM IN TERMS OF BEST/WORST VALUES, MEAN VALUES, AND STANDARD

DEVIATIONS ON THE FIVE INSTANCES

Instance n # of dimensions # of solutions algorithm N M best/worst mean ± std

Sabuncu3 9 171 2.99× 1051
CNS/DHNm 200 50 0/0 0.00 ± 0.00
CNS/BMm 40 50 0/0 0.00 ± 0.00

Sabuncu4 9 95 3.96× 1028
CNS/DHNm 200 50 0/0 0.00 ± 0.00
CNS/BMm 50 50 0/0 0.00 ± 0.00

Sabuncu6 9 209 8.23× 1062
CNS/DHNm 2000 200 0/0 0.00 ± 0.00
CNS/BMm 500 200 0/0 0.00 ± 0.00

Sabuncu7 9 168 3.74× 1050
CNS/DHNm 1000 200 4/0 0.00 ± 0.00
CNS/BMm 200 200 0/0 0.00 ± 0.00

Sabuncu9 9 163 1.17× 1049
CNS/DHNm 300 150 0/0 0.00 ± 0.00
CNS/BMm 100 150 0/0 0.00 ± 0.00

substantiated in five instances. The experimental results show
that both algorithms are capable of solving the Sudoku puzzles
effectively, and the algorithm based on Boltzmann machines
entails a smaller population size. Further investigations may
aim at the parallel implementation of the CNS algorithms to
improve their efficiency.

REFERENCES

[1] W. Hong, “Adaptive image data hiding in edges using patched reference
table and pair-wise embedding technique,” Information Sciences, vol.
221, pp. 473–489, 2013.

[2] S. G. Krishna and T. Moger, “Optimal Sudoku reconfiguration technique
for total-cross-tied PV array to increase power output under non-uniform
irradiance,” IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp.
1973–1984, 2019.

[3] W. Chen, C.-C. Chang, S. Weng, and B. Ou, “Multi-layer mini-Sudoku
based high-capacity data hiding method,” IEEE Access, vol. 8, pp.
69 256–69 267, 2020.

[4] T. Yato and T. Seta, “Complexity and completeness of finding an-
other solution and its application to puzzles,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. 86, no. 5, pp. 1052–1060, 2003.

[5] Z. W. Geem, “Harmony search algorithm for solving Sudoku,” in Inter-
national Conference on Knowledge-Based and Intelligent Information
and Engineering Systems. Springer, 2007, pp. 371–378.

13

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:25:41 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Feasible results obtained by using the proposed variables reduction and CNS/BMm algorithm on Sabuncu6.

Fig. 7. Feasible results obtained by using the proposed variables reduction and CNS/BMm algorithm on Sabuncu7.

[6] T. K. Moon, J. H. Gunther, and J. J. Kupin, “Sinkhorn solves Sudoku,”
IEEE Transactions on Information Theory, vol. 55, no. 4, pp. 1741–
1746, 2009.

[7] J. Méhat and T. Cazenave, “Combining UCT and nested Monte Carlo
search for single-player general game playing,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 2, pp. 271–277, 2010.

[8] J. Gunther and T. Moon, “Entropy minimization for solving Sudoku,”
IEEE Transactions on Signal Processing, vol. 60, pp. 508–513, 2011.

[9] F. Maes, D. L. St-Pierre, and D. Ernst, “Monte carlo search algorithm
discovery for single-player games,” IEEE Transactions on Computation-
al Intelligence and AI in Games, vol. 5, no. 3, pp. 201–213, 2013.

[10] L. C. Coelho and G. Laporte, “A comparison of several enumerative
algorithms for Sudoku,” Journal of the Operational Research Society,
vol. 65, no. 10, pp. 1602–1610, 2014.

[11] B. Boreland, G. Clement, and H. Kunze, “Set selection dynamical
system neural networks with partial memories, with applications to
Sudoku and KenKen puzzles,” Neural Networks, vol. 68, pp. 46–51,
2015.

[12] Y. Jin and J.-K. Hao, “Solving the Latin square completion problem by
memetic graph coloring,” IEEE Transactions on Evolutionary Compu-
tation, vol. 23, no. 6, pp. 1015–1028, 2019.

[13] T. Mantere and J. Koljonen, “Solving, rating and generating Sudoku puz-
zles with GA,” in 2007 IEEE Congress on Evolutionary Computation.
IEEE, 2007, pp. 1382–1389.

[14] P. Malakonakis, M. Smerdis, E. Sotiriades, and A. Dollas, “An FPGA-
based Sudoku solver based on simulated annealing methods,” in 2009
International Conference on Field-Programmable Technology. IEEE,
2009, pp. 522–525.

[15] R. Soto, B. Crawford, C. Galleguillos, E. Monfroy, and F. Paredes, “A
hybrid ac3-tabu search algorithm for solving Sudoku puzzles,” Expert
Systems with Applications, vol. 40, no. 15, pp. 5817–5821, 2013.

[16] J. M. Hereford and H. Gerlach, “Integer-valued particle swarm opti-

mization applied to Sudoku puzzles,” in 2008 IEEE Swarm Intelligence
Symposium, 2008, pp. 1–7.

[17] X. Q. Deng and Y. D. Li, “A novel hybrid genetic algorithm for solving
Sudoku puzzles,” Optimization Letters, vol. 7, no. 2, pp. 241–257, 2013.

[18] H. Lloyd and M. Amos, “Solving Sudoku with ant colony optimization,”
IEEE Transactions on Games, vol. 12, no. 3, pp. 302–311, 2019.

[19] D. W. Tank and J. J. Hopfield, “Simple ‘neural’optimization networks:
an A/D converter, signal decision circuit, and a linear programming
circuit,” IEEE Trans. Circuits and Systems, vol. 33, no. 5, pp. 533–541,
1986.

[20] J. J. Hopfield and D. W. Tank, “Neural computation of decisions in
optimization problems,” Biological Cybernetics, vol. 52, no. 3, pp. 141–
152, 1985.

[21] ——, “Computing with neural circuits - a model,” Science, vol. 233,
no. 4764, pp. 625–633, 1986.

[22] H. Li, J. Wang, and J. Wang, “Solving the travelling salesman problem
based on collaborative neurodynamic optimization with discrete Hop-
field networks,” in 2021 11th International Conference on Information
Science and Technology (ICIST). IEEE, 2021, pp. 456–465.

[23] J. Wang, “Analysis and design of a recurrent neural network for linear
programming,” IEEE Trans. Circuits and Systems: Part I, vol. 40, no. 9,
pp. 613–618, 1993.

[24] ——, “A deterministic annealing neural network for convex program-
ming,” Neural Networks, vol. 7, no. 4, pp. 629–641, 1994.

[25] Q. Liu and J. Wang, “A one-layer recurrent neural network with
a discontinuous activation function for linear programming,” Neural
Computation, vol. 20, no. 5, pp. 1366–1383, 2008.

[26] Z. Guo, Q. Liu, and J. Wang, “A one-layer recurrent neural network for
pseudoconvex optimization subject to linear equality constraints,” IEEE
Transactions on Neural Networks, vol. 22, no. 12, pp. 1892–1900, 2011.

[27] A. Hosseini, J. Wang, and S. M. Hosseini, “A recurrent neural network

14

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:25:41 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. Feasible results obtained by using the proposed variables reduction and CNS/BMm algorithm on Sabuncu9.

for solving a class of generalized convex optimization problems,” Neural
Networks, vol. 44, pp. 78–86, 2013.

[28] G. Li, Z. Yan, and J. Wang, “A one-layer recurrent neural network for
constrained nonconvex optimization,” Neural Networks, vol. 61, pp. 10–
21, 2015.

[29] Y. Xia and J. Wang, “A bi-projection neural network for solving
constrained quadratic optimization problems,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 27, no. 2, pp. 214–224,
2016.

[30] G. E. Hinton and T. J. Sejnowski, “Optimal perceptual inference,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1983, pp. 448–453.

[31] V. Zissimopoulos, V. T. Paschos, and F. Pekergin, “On the approximation
of NP-complete problems by using the Boltzmann machine method: the
cases of some covering and packing problems,” IEEE Transactions on
Computers, vol. 40, no. 12, pp. 1413–1418, 1991.

[32] J. H. Korst and E. H. Aarts, “Combinatorial optimization on a Boltzmann
machine,” Journal of Parallel and Distributed Computing, vol. 6, no. 2,
pp. 331–357, 1989.

[33] E. H. Aarts and J. H. Korst, “Boltzmann machines for travelling
salesman problems,” European Journal of Operational Research, vol. 39,
no. 1, pp. 79–95, 1989.

[34] H. Li and J. Wang, “A collaborative neurodynamic optimization algo-
rithm based on Boltzmann machines for solving the traveling salesman
problem,” in 2021 11th International Conference on Intelligent Control
and Information Processing (ICICIP). IEEE, 2021, pp. 325–333.

[35] M. Peng, N. K. Gupta, and A. F. Armitage, “An investigation into
the improvement of local minima of the Hopfield network,” Neural
Networks, vol. 9, no. 7, pp. 1241–1253, 1996.

[36] H. Che and J. Wang, “A collaborative neurodynamic approach to global
and combinatorial optimization,” Neural Networks, vol. 114, pp. 15 –
27, 2019.

[37] Z. Yan, J. Fan, and J. Wang, “A collective neurodynamic approach to
constrained global optimization,” IEEE Transactions on Neural Network-
s and Learning Systems, vol. 28, no. 5, pp. 1206–1215, 2017.

[38] Z. Yan, J. Wang, and G. Li, “A collective neurodynamic optimization ap-
proach to bound-constrained nonconvex optimization,” Neural Networks,
vol. 55, pp. 20–29, 2014.

[39] J. Wang and J. Wang, “Two-timescale multilayer recurrent neural
networks for nonlinear programming,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 1, pp. 37–47, Jan. 2022.

[40] M.-F. Leung and J. Wang, “A collaborative neurodynamic approach to
multiobjective optimization,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 11, pp. 5738 – 5748, 2018.

[41] S. Yang, Q. Liu, and J. Wang, “A collaborative neurodynamic approach
to multiple-objective distributed optimization,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 4, pp. 981–992,
April 2018.

[42] H. Che and J. Wang, “A two-timescale duplex neurodynamic approach
to biconvex optimization,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 8, pp. 2503–2514, 2019.

[43] H. Che and J. Wang, “A two-timescale duplex neurodynamic approach

to mixed-integer optimization,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 32, no. 1, pp. 36–48, 2021.

[44] J. Wang, J. Wang, and H. Che, “Task assignment for multivehicle
systems based on collaborative neurodynamic optimization,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 4,
pp. 1145–1154, 2020.

[45] J. Wang, J. Wang, and Q. Han, “Multi-vehicle task assignment based
on collaborative neurodynamic optimization with discrete Hopfield net-
works,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 32, no. 12, pp. 5274–5286, Dec. 2021.

[46] Z. Yan and J. Wang, “Nonlinear model predictive control based on
collective neurodynamic optimization,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 26, no. 4, pp. 840–850, 2015.

[47] J. Wang, J. Wang, and Q. Han, “Neurodynamics-based model predic-
tive control of continuous-time under-actuated mechatronic systems,”
IEEE/ASME Transactions on Mechatronics, no. 1, pp. 311–321, Jan.
2021.

[48] M.-F. Leung and J. Wang, “Minimax and biobjective portfolio selection
based on collaborative neurodynamic optimization,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 7, pp. 2825–
2836, Jul. 2021.

[49] X. Li, J. Wang, and S. Kwong, “Hash bit selection via collaborative
neurodynamic optimization with discrete Hopfield networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, 2022,
in press.

[50] Y. Wang, X. Li, and J. Wang, “A neurodynamic optimization approach
to supervised feature selection via fractional programming,” Neural
Networks, vol. 136, pp. 194–206, Apr. 2021.

[51] J. Fan and J. Wang, “A collective neurodynamic optimization approach
to nonnegative matrix factorization,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 10, pp. 2344–2356, 2017.

[52] H. Che, J. Wang, and A. Cichocki, “Bicriteria sparse nonnegative ma-
trix factorization via two-timescale duplex neurodynamic optimization,”
IEEE Transactions on Neural Networks and Learning Systems, 2022, in
press.

[53] J. Zhao, J. Yang, J. Wang, and W. Wu, “Spiking neural network
regularization with fixed and adaptive drop-keep probabilities,” IEEE
Transactions on Neural Networks and Learning Systems, 2022, in press.

[54] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the National Academy
of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[55] Y. Takefuji and K.-C. Lee, “A near-optimum parallel planarization
algorithm,” Science, vol. 245, no. 4923, pp. 1221–1223, 1989.

[56] Y. Takefuji and K. C. Lee, “Artificial neural networks for four-coloring
map problems and k-colorability problems,” IEEE Transactions on
Circuits and Systems, vol. 38, no. 3, pp. 326–333, 1991.

[57] G. Galán-Marı́n and J. Muñoz-Pérez, “Design and analysis of maximum
Hopfield networks,” IEEE Transactions on Neural Networks, vol. 12,
no. 2, pp. 329–339, 2001.

[58] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-International Conference on Neural Networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

15

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:25:41 UTC from IEEE Xplore.  Restrictions apply. 



(a) CNS/DHNm Sabuncu3

M
=

10 20 30 40 50

M
=

10 20 30 40 50

M
=

10 20 30 40 50

M
=

10 20 30 40 50

M
=

10 20 30 40 50

N = 5 N = 10 N = 30 N = 40 N = 50

0

2

4

6

8

10

12

14

(b) CNS/BMm Sabuncu3

(c) CNS/DHNm Sabuncu4 (d) CNS/BMm Sabuncu4

(e) CNS/DHNm Sabuncu6

M
=

10 50 10
0

15
0

20
0

M
=

10 50 10
0

15
0

20
0

M
=

10 50 10
0

15
0

20
0

M
=

10 50 10
0

15
0

20
0

M
=

10 50 10
0

15
0

20
0

N = 100 N = 200 N = 400 N = 500 N = 600

0

2

4

6

8

(f) CNS/BMm Sabuncu6

(g) CNS/DHNm Sabuncu7 (h) CNS/BMm Sabuncu7

(i) CNS/DHNm Sabuncu9

M
=

10 20 50 10
0

15
0

M
=

10 20 50 10
0

15
0

M
=

10 20 50 10
0

15
0

M
=

10 20 50 10
0

15
0

M
=

10 20 50 10
0

15
0

N = 5 N = 10 N = 20 N = 50 N = 100

0

2

4

6

8

10

12

14

(j) CNS/BMm Sabuncu9

Fig. 9. Monte Carlo test results obtained by using the CNS algorithms with several M and N on the five instances.

16

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:25:41 UTC from IEEE Xplore.  Restrictions apply. 



(a) Sabuncu3

(b) Sabuncu4

(c) Sabuncu6

(d) Sabuncu7

(e) Sabuncu9

Fig. 2. Snapshots of neuronal states, and penalty function value of in the
CNS/BMm algorithm.

[59] Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary PSO with mutation
operator for feature selection using decision tree applied to spam
detection,” Knowledge-Based Systems, vol. 64, pp. 22–31, 2014.

[60] A. Bartlett, T. P. Chartier, A. N. Langville, and T. D. Rankin, “An
integer programming model for the Sudoku problem,” Journal of Online
Mathematics and its Applications, vol. 8, no. 1, 2008.

[61] I. Sabuncu, “Work-in-progress: solving Sudoku puzzles using hybrid ant
colony optimization algorithm,” in 2015 1st International Conference on

(a) Sabuncu3 (M = 50 and N = 40) (b) Sabuncu4 (M = 50 and N = 50)

(c) Sabuncu6 (M = 200 and N =
500)

(d) Sabuncu7 (M = 200 and N =
200)

(e) Sabuncu9 (M = 150 and N =
100)

Fig. 3. The convergent behavior of the CNS/BMm algorithm in the five
instances.

Industrial Networks and Intelligent Systems. IEEE, 2015, pp. 181–184.

17

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:25:41 UTC from IEEE Xplore.  Restrictions apply. 


