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Abstract—The traveling salesman problem is a well-known
challenge in combinatorial optimization. It involves determining
the shortest possible route that visits each city exactly once from
a given list, returning to the starting point with the least total dis-
tance traveled. It has extensive applications in logistics, planning,
and routing. It is a well-known NP-hard optimization problem.
In this paper, the traveling salesman problem is formulated as
a quadratic assignment problem with constraints to eliminate
excessively long paths for enhancing efficiency. We introduce a
collaborative neurodynamic optimization algorithm for solving
traveling salesman problems with Boltzmann machines with
momentum term and the 2-opt heuristic. The proposed algorithm
consists of a phase with BMm’s and another phase with 2-opt
heuristics. It leverages multiple BMm’s and 2-opt heuristics, and
a particle swarm optimization update rule to re-initialize BMm’s
for escaping from local optima and moving toward global optimal
solutions. We demonstrate its superior performance against two
baselines in terms of the objective function values.

Index Terms—Traveling salesman problem, combinatorial op-
timization, quadratic assignment problem, Boltzmann machine,
2-opt heuristic, collaborative neurodynamic optimization.

I. INTRODUCTION

The traveling salesman problem (TSP) is a classical and
extensively studied problem in combinatorial optimization and
computer science. Given a list of cities and the distances
between each pair of them, the objective of the TSP is to find
the shortest possible route that visits each city exactly once
and returns to the origin city. Despite its simple statement,
the TSP is known to be NP-hard, meaning that there is no
known polynomial-time algorithm to solve it [1]. The TSP
has significant practical applications in various domains, such
as logistics and distribution, where it models the problem of
finding the most efficient route for a delivery vehicle [2].
Other applications include job sequencing in manufacturing
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systems [3], printed circuit boards drilling [4], wallpaper
cutting [5], and warehouse order-picking [6].

Due to its computational complexity, exact algorithms for
the TSP, such as the branch and bound algorithm [5] and
the dynamic programming algorithm [7], are only feasible
for small instances. For larger problems, heuristic and meta-
heuristic algorithms have been developed to find near-optimal
solutions within reasonable computational times. The heuristic
method includes the nearest neighbor algorithm [8], the inser-
tion heuristic algorithm [9], and the 2-opt algorithm [10]. The
metaheuristic method includes the genetic algorithm [11], the
ant colony optimization algorithm [12], and the particle swarm
optimization algorithm [13].

Since Hopfield’s pioneering work on neural networks as
computational models [14], [15], neurodynamic optimization
approaches have attracted considerable attention. The discrete
and continuous Hopfield networks have been applied to combi-
natorial optimization problems, including the TSP [16], [17].
However, single neurodynamic models often get trapped in
local optima when dealing with binary variables [18]. To
address this limitation, Collaborative Neurodynamic Optimiza-
tion (CNO) has been proposed, where a population of neurody-
namic models operates in parallel for scatter search [19]-[22].
This framework integrates neurodynamic optimization with
swarm intelligence and is proven to converge almost surely
to global optima [23].

In this paper, we formulate the TSP as a quadratic assign-
ment problem with constraints designed to eliminate exces-
sively long paths, thus enhancing efficiency. We introduce a
CNO algorithm that combines Boltzmann Machines with a
momentum term (BMm) and the 2-opt heuristic. The algorithm
operates in two phases: the first employs multiple BM-Ms for
local search, and the second applies the 2-opt heuristic for
solution refinement. Additionally, a Particle Swarm Optimiza-
tion (PSO) update rule is utilized to re-initialize the BMms,
facilitating escape from local optima and convergence toward
global optimal solutions. The experimental results indicate
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that the proposed algorithm achieves better solution quality
compared to the two baseline methods. The main contributions
of this work can be summarized as follows:

o We formulate the traveling salesman problem (TSP) as
a constrained quadratic assignment problem (QAP) by
introducing a filtering mechanism that eliminates exces-
sively long paths during the search, thereby reducing the
solution space and enhancing computational efficiency.

e« We propose a novel collaborative neurodynamic opti-
mization algorithm called CNO-CTSP/BMm, integrating
multiple Boltzmann Machines with momentum (BMm),
the 2-opt local search heuristic, and a particle swarm opti-
mization (PSO)-based re-initialization strategy to escape
local minima and guide the population towards global
optimality.

« Extensive experiments show that the proposed method
consistently outperforms baseline neurodynamic algo-
rithms in terms of both solution quality.

The structure of the paper is organized as follows: Section II
covers the foundational concepts, including the Boltzmann
machine, particle swarm optimization, and mutation opera-
tions. Section III outlines the formulation and reformulation
of the TSP. Section IV elaborates on the proposed CNO-CTSP
algorithm. Section V presents the experimental results using
six benchmark datasets. Finally, Section VI summarizes the
findings of the paper.

II. PRELIMINARIES

A. Neurodynamic Model

1) Boltzmann Machine (BM): BM is a widely recognized
stochastic neural network, regarded as an extension of the
Hopfield network. It is a fully connected network with binary
states. Neural states in this network are updated according
to the states of their neighboring neurons and the associated
connections. The probability of a neural transition is given by
the following equation [24]:

{Puxw:1y=u1+e”$, W
P(zi(t) =0) =1 - P(xi(t) = 1),

where T denotes a temperature parameter, and u(t) is given
by:
u(t) = Wa(t) — 0. 2)
The temperature follows an exponential multiplicative cool-
ing schedule, given by:
T = Ty,
where T\ denotes an starting temperature, and « is a cooling

factor ranging between 0 and 1.
A BM with a momentum term (BMm) [25] is expressed as:

u(t) = u(t) + Wa(t) — 6,

1
) =1)= —
p(l‘ ( ) ) 14 exp(— ulj(,t)) 3)

p(ri(t+1)=0)=1—-p(z;(t+1) =1).

B. Collaborative Neurodynamic Optimization

It is a swarm intelligence optimization method inspired by
the cooperative dynamics seen in bird flocks. The method uses
a group of particles, with individual particles modifying their
positions based on their personal best and the best position
within the swarm [26].

Each particle’s velocity v; and position z;(¢) are updated
according to the following rules:

vi(t+1) = coui(t) + erri(af —xi(t))
+earo(z* — (1)), “4)
zi(t+1)= x;(t) +vi(t+ 1),

where x; € R™ represents the position of the i particle, x} is
the i particle’s individual best position, 2* is the best position
found by the entire swarm, ¢y € [0, 1] is the inertia coefficient,
c1 and ¢y are cognitive and social learning factors, respectively,
both within the range [0, 1] and 71 and r are random numbers
sampled from the uniform distribution in [0, 1].

The mutation operation is introduced to maintain solution
diversity and prevent the algorithm from getting trapped in
local optima. If swarm diversity falls below a certain threshold,
the mutation operation is applied to escape local optimal
solutions.

The swarm’s diversity is measured by [27]:

N
1 T *
O(a) = 5= Dl =", )
i=1

where N is the number of solutions, n is the solution dimen-
sionality, 2@ is the ® solution, and z* is the best solution
identified across all particles.

A commonly used mutation operator for binary variables,
known as the bit-flip mutation [28], is defined as:

if ¢ <¢,
otherwise

(6)
3
where Z; represents the opposite state of x;, ¢; is a random
variable uniformly distributed within [0,1], and £ is the
predefined mutation probability. The mutation helps increase
exploration and maintain diversity, which improves the overall
performance of the swarm-based optimization method.

C. 2-Opt Heuristic

The 2-opt heuristic is a simple and effective local search
algorithm used to improve an existing tour in the TSP by iter-
atively eliminating crossing paths, which often leads to shorter
tours [10]. Given a current tour T = (c1, ¢a, - . . , Cp, 1), Where
c; represents the city visited at position ¢, the 2-opt heuristic
operates as follows: select two non-adjacent edges (c;, ¢;+1)
and (cg,cr41) with 1 < ¢ < k — 1 < n, and replace them
with edges (¢;, ¢x) and (¢; 41, cg41)- This exchange effectively
reverses the sequence of cities between positions ¢ 4+ 1 and k,
resulting in a new tour. The change in tour length AL due to
this operation is calculated by

AL = (dcick + d0i+1ck+1) - (dCiCi+1 + deCk+1)’ (7N
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where d.,; denotes the distance between cities ¢; and c;. If
AL < 0, the new tour is accepted as it reduces the total tour
length. This process is repeated for different pairs of edges
until no further improvements can be made, yielding a tour
that is locally optimal with respect to 2-opt moves.

III. PROBLEM FORMULATIONS
A. Problem Formulation

Consider a set of n cities, and let d;; represent the distance

from city j and city I, with the distance matrix D = [d;;]
being symmetric (i.e., d;; = dy; for all 5,1 = 1,...,n). We
introduce binary decision variables z;; for 4,5 = 1,...,n,

defined as x;; = 1 if city j is visited at position ¢ in the tour,
and x;; = 0 otherwise.

The objective is to minimize the total length of the tour,
which can be expressed as [29]:

n n n
Hgn E g E dj1Zi§T (i mod n)+1,1s

(8a)
i=1j=11=1 I#j
sty miy=1, Vi=1,...n, (8b)
=1
n
dwy=1, Vi=1,...,n, (8c)
j=1
zi; €{0,1}, Vi, j=1,...,n. (8d)
(8e)

where the objective function (8a) calculates the total distance
of the tour by summing the distances between consecutive
cities. The term ;;, T(; mod n)41,1 €nsures that the distance
between city j at position ¢ and city [ at position (¢ mod n)+1
is included in the sum when both z;; = 1 and Z(; mod n)+1,1 =
1. The modulo operation (i mod n) + 1 handles the wrap-
around from the last city back to the first city, ensuring the
tour is closed. Constraints (8b) ensure that each city is visited
exactly once. For each city j, the sum over all positions %
of x;; must equal 1, meaning city j appears exactly once
in the tour. Constraints (8c) ensure that at each position ¢,
exactly one city is visited. The binary constraints (8d) enforce
that the decision variables x;; can only take values O or I.
Together, these constraints guarantee that X = [z;;] forms a
permutation matrix, representing a valid tour visiting each city
exactly once.

B. Problem Reformulation

It could be efficient to solve TSP by incorporating con-
straints to eliminate long paths early in the search process.
By introducing an additional constraint that avoids selecting
city pairs with distances significantly exceeding a threshold,
the search space can be reduced, focusing on promising routes.
To this end, we define an index set I’ containing pairs of cities
(4,1) to be avoided:

F = {(]71) | djl 2 )\dmax + (]- - )\)dminv .7 # l}v

where d;; denotes the distance between city j and city [, dmax
and d,,;, denote the maximum and minimum distances in

the distance matrix, respectively, and ) is a tuning parameter
ranging from O to 1. The parameter A controls the balance
between the maximum and minimum distances to identify
city pairs that should be avoided to prevent the selection of
excessively long paths.

We reformulate the original TSP problem in (8) as follows:

n n n
min E E E dj1%i5% (i mod n)+1,1»

(%a)
i=1 j=11=1,l#j
sty =1, Vi=1,...,n, (9b)
=1
domiy=1, Vi=1,...,n, (9¢)
j=1
Tijzit1y =0, Vi=1,...,n, (j,]) € F, (9d)
Tij € {0,1}, V’L,j =1,...,n, (%e)

where constraints (9d) ensure that city pairs in F' are not
selected consecutively in the tour, effectively preventing ex-
cessively long paths.

Transforming the TSP into a quadratic unconstrained bi-
nary optimization (QUBO) problem allows us to lever-
age neural network models such as BM for solv-
ing the problem efficiently. Consider the vector z =
[3311, X125 ooy Llny L21, L2y eoey L2y oevy J?nn]T S {0, 1}”2. The
original formulation in (9) can be reformulated into:

min bem, (10a)
s.t. Ax = e, (10b)
' Bz =0, (10c)

where the element J(i,l)nﬂ',(k—nnﬂ equals dj; if k=17+1
fori =1,2,...,n—1, and k£ = 1 for 4 = n. The matrices A
and e are written:

_ Il 12 In 2nxn?
A= |:I T I:| € {071} ’
e = {1}2n><1.

The matrix B is specified as:
Bi—1yn+j,(k—1)n+i

1 ifk=di+4+1and (j,l)€F, fori=1,2,...,n—1,
=4q1 ifk=1andi=mn and (4,1) € F,

0 otherwise.

To address the constraints in (10b), a quadratic penalty term
is introduced: 1
pi(z) = 514z — el

Additionally, a penalty term for the constraints in (10c) is
defined as:

Y

Next, we construct a penalized objective function as follows:

fo(@) = f(x) + p(pr(x) + pa(2)),

pa(z) = 27 Bx.
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where p is a penalty parameter.
The problem in (9) is thus transformed into a QUBO
formulation:

min f,(z),

stz e {0,117 (12)

As shown in [30], if p is sufficiently large, problems (8)
and (12) would have the same optimal solutions.

We can further simplify the penalized objective function
fo(z) as follows:

fol@) = a" Da + L)\ Az — ef}3 + pa” Ba,
—2T(D+ B + g((Ax — )T (Az — ¢)),
1 ~
= —in(—2D — pAT A —2B)x — pe’ Az + geTe.

From this simplification, the parameters for BM are derived
as:

W = —2D — pATA — 2B,
6= —pel A

To ensure stability in BM, the diagonal elements of W (i.e.,
w;;) must be set to zero. Because we have a;f = x; for binary
variables x;, the diagonal elements of W can be zeroed, while
adding an equivalent linear term diag(wi1, ..., wpy)x. Then,
W and 6 become:

13)
(14)

Thus, the TSP p}roblem is transformed inEo the form of
problem (9), using W from equation (13) and 6§ from equation
(14).

IV. CNO-CTSP/BMM ALGORITHM

Fig. 1 illustrates the framework of the proposed CNO-
CTSP algorithm. In the proposed algorithm, multiple BMms
are utilized for scattered local search, and the 2-opt heuristic
is applied to enhance the solutions found by the BMms.
Furthermore, the PSO update rule re-initializes the neuronal
states of BMms. The 2-opt heuristic is a local search algorithm
used to refine an existing tour in the TSP by eliminating
crossings and finding shorter paths. The detailed pseudocode
for the 2-opt algorithm is presented in Algorithm 1.

Algorithm 2 presents the CNO-CTSP/BMm approach for
solving the TSP. In steps 2-6, multiple BMms reach their
equilibrium states, and the algorithm updates the best solution
for ith BMm. In step 3, neuron activation is carried out
simultaneously. Step 4 applies the 2-opt heuristic to improve
the solutions. Steps 7-14 involve updating the global best
solution. Step 15 re-initializes the states of BMms using the
PSO update rule. Step 16 measures swarm diversity, and steps
17-19 implement the bit-flip mutation.

Algorithm 1: 2-Opt Heuristic Algorithm
Input: An initial tour T = [¢1, ca, . . ., ¢y), Where ¢; is
the city at position 4; distance matrix D = [d;;]
Output: An improved tour T’

1 repeat

2 improvement < false;

3 fori=1ton—2do

4 for k=1i+ 2 tondo

5 if Kk =n and i =1 then

6 | continue;

7 end

8 il — Ci;

9 ig — Cit+1s

10 k1« c;

1 ko < C(k mod n)+1>

12 A+ (dilkl + dika) - (di1i2 + dk1k2);
13 if A <0 then

14 T[i—l—l:kj]e[ck,...,cwl];
15 improvement <— true;

16 end

17 end

18 end
19 until no improvement is found,
20 return 7'

V. EXPERIMENTAL RESULTS
A. Experimental Setup

This section presents an assessment of the performance
of three CNO-based algorithms: CNO-TSP/DHN, CNO-
TSP/BM, and CNO-CTSP/BMm. These algorithms are ap-
plied to six well-known TSP benchmark datasets: Ulysses22,
Berlin52, Lin105, Ch130, Gr202, and TSP225. The datasets
vary in size and complexity, ranging from 22 cities to 225
cities, and are sourced from the TSPLIB benchmark suite!.

For each dataset, we perform 50 independent runs for each
algorithm to ensure statistical robustness. The parameters for
all algorithms are set as follows: A = 0.8. the number of
Boltzmann Machines (population size) N = 50, and the
termination criterion M = 10 iterations without improvement
in the best solution. For the CNO-CTSP/BMm algorithm, the
cooling rate v = 0.5. The PSO parameters are set to ¢y = 1,
c1 = 2, and co = 2. The bit-flip mutation probability is set to
P,, = 0.01, with a diversity threshold of ¢ = 0.004.

B. Results and Analysis

Figure 2 illustrates the optimal tours obtained by each
algorithm, showing the solution quality visually. As shown
in Figure 2, the CNO-CTSP/BMm algorithm consistently
achieves better results than the two baseline methods across
all datasets.

Table I presents the performance of each algorithm across
the six datasets, including the best, worst, mean solutions,

Thttp://comopt.ifi.uni- heidelberg.de/software/TSPLIB95/index.html
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Fig. 1: A flowchart of CNO-CTSP/BMm.

Algorithm 2: CNO-CTSP/BMm algorithm
Input: Number of BMs N, stopping criteria M,
starting temperature 7j, cooling factor «,
[z1(0), ..., 2™ (0)] € 0, 117" XN},
[v(l), ...,v(N)] € [-1, 1]{"2XN}, co, €1, and cg,
and diversity limit e.
Output: z*.
1 while m < M do

2 foreach i to N BMs do

3 Update the neural states of the i BM using
equation (1);

4 Apply the 2-opt heuristic in Algorithm 1 to
refine the solution z(?;

5 Update the objective function f(z(*)) found by
the i BM;

6 end

7 i* = argming { f(xM), .., f(x@), .., f(xN)};

s | if f(27)) < f(z*) then

9 ‘ f@*) < f(z0)), 2% < 20, m < 0;

10 else

11 | m—m+1;

12 end

13 Update the initial neural states of all BMs using

the PSO rule by equation (4);

14 Calculate the diversity d(z) using equation (5);

15 if 6(q) < € then

16 ‘ Adjust z;(0) using equation (6);

17 end

18 end

19 return z*.

and standard deviations over 30 runs. As shown in Table I,
CNO-CTSP/BMm not only reaches the optimal solution for

the smaller datasets (e.g., Ulysses22 and Berlin52) but also
achieves near-optimal results for larger datasets (e.g., Lin105,
Ch130, Gr202, and TSP225). For instance, in the Ulysses22
dataset, CNO-CTSP/BMm consistently finds the exact optimal
solution (7013) across all runs, demonstrating its ability to
converge reliably to high-quality solutions. Additionally, the
proposed algorithm maintains lower standard deviations across
all datasets, indicating more consistent performance.

VI. CONCLUDING REMARKS

The paper introduces CNO-CTSP/BMm to address the TSP.
The algorithm utilizes multiple Boltzmann machines with
momentum terms, the 2-opt heuristic, and the neural states are
re-initialized using the PSO update rule upon convergence. The
efficiency is achieved by incorporating additional constraints
to reduce computational complexity, utilizing multiple Boltz-
mann Machines with momentum for scattered local searches,
applying the 2-opt heuristic for refinement, and leveraging the
meta-heuristic rule for global re-positioning. The experimental
results indicate that CNO-CTSP/BMm achieves better solution
quality compared to the baseline methods. Future research
could explore integrating learning methods with the CNO al-
gorithm to enhance the performance and scalability of solving
TSP.
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TABLE I: Performance comparison of three CNO-based algorithms (CNO-TSP/DHN, CNO-TSP/BM, and CNO-CTSP/BMm)
on six benchmark datasets for the traveling salesman problems. The table presents the number of cities, the optimal solution,
and the best/worst, mean, and standard deviation of the results obtained by each algorithm, where the best results are highlighted
in bold and the second-best results are underlined.
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