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Abstract—Bi-clustering, also known as co-clustering, is a pow-
erful data analysis technique that simultaneously clusters rows
and columns of a data matrix, revealing hidden patterns. In this
paper, we propose a neurodynamics-driven binary matrix fac-
torization approach for bi-clustering binary data. The proposed
method utilizes multiple discrete Hopfield networks operating
concurrently to explore local optimal solutions. Furthermore,
a particle swarm optimization rule is iteratively applied to
reinitialize the neuronal states for directing the search toward
better solutions. Comparative evaluations across six benchmark
datasets reveal that the proposed method outperforms five
existing methods in terms of five internal and external indices.

Index Terms—Bi-clustering; co-clustering; binary matrix
factorization; quadratic unconstrained binary optimization
(QUBO); collaborative neurodynamic optimization; Boltzmann
machine

I. INTRODUCTION

Bi-clustering has emerged as a powerful data analysis
technique due to its ability to simultaneously cluster rows and
columns of a data matrix, uncovering local patterns. It has
found wide applications in various domains such as microarray
and gene expression analysis [1], computational biology [2],
biomedicine [3], text mining [4], natural language processing
[5], marketing [6], collaborative filtering [7], etc.

Over the past decades, numerous biclustering algorithms
have been developed to tackle the challenges inherent in
simultaneously clustering both dimensions of data matrices,
including Cheng and Church’s algorithm [8], the extracting
conserved gene expression motifs algorithm [9], the fast
divide-and-conquer algorithm [10], the plaid algorithm [11],
the large average submatrices algorithm [12], etc. Challenges
such as handling overlapping biclusters and scaling to large
datasets remain prevalent. Therefore, there is a continuous
demand for innovative biclustering algorithms that can effec-
tively address these issues, particularly for binary data matrices
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Hong Kong Special Administrative Region of China under Grants 11202019,
and 11203721; and in part by the InnoHK initiative, the Government of
the Hong Kong Special Administrative Region, and the Laboratory for AI-
Powered Financial Technologies.

where the discrete nature of the data adds an extra layer of
complexity.

In his seminal papers [13], [14], John Hopfield foresaw that
recurrent neural networks can collectively serve as powerful
computational models. Specifically, the Hopfield networks are
developed for combinatorial optimization [14], [15]. Since
then, a variety of neurodynamic optimization models have
been developed for solving numerous optimization prob-
lems [16]. Despite the progress, it is acknowledged that an
individual neurodynamic model faces challenges in effec-
tively addressing combinatorial optimization problems because
gradient-driven neurodynamic models are prone to be trapped
in local minima. In recent years, collaborative neurodynamic
optimization (CNO) has gained prominence as a hybrid intelli-
gence framework, combining neurodynamic optimization with
evolutionary optimization methods to tackle a wide array of
complex optimization challenges. In analogy with scattered
searches in swarm intelligence, the CNO approach utilizes
multiple neurodynamic optimization models to probe local
optima. Additionally, it integrates a meta-heuristic rule to
update initial neuronal states for escaping from local optimal
solutions and exploration of global optimal solutions. A mu-
tation operator may be introduced to preserve a certain level
of the diversity of initial neuronal states to prevent premature
convergence. As demonstrated in [17], [18], collaborative neu-
rodynamic approaches almost surely converge to the global op-
tima. CNO-driven computationally intelligent problem solvers
appear in many applications, including nonnegative matrix
factorization [19], Boolean matrix factorization [20], bicriteria
sparse nonnegative matrix factorization [21], binary matrix
factorization [22], etc.

In this paper, we propose a neurodynamics-driven binary
matrix factorization approach for bi-clustering binary data. We
formulate the biclustering of binary data as binary matrix fac-
torization and propose a collaborative neurodynamic optimiza-
tion algorithm for binary matrix factorization. The proposed
algorithm consists of two phases: one where discrete Hopfield
networks with momentum terms (DHNm) are synchronously
updated and another where discrete Hopfield networks (DHN)
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are updated in synchronized batches. It employs numerous
DHNs along with a particle swarm optimization update rule
to reposition DHNs for escaping local optima towards global
optima. We demonstrate that it outperforms five prominent
baselines in terms of five internal and external indices.

The main contributions of this paper are outlined as follows:
• We develop a collaborative neurodynamic optimization

algorithm that combines the discrete Hopfield network’s
effective exploration ability with momentum terms in
scattered local searches, along with the gradient-free
update characteristic of particle swarm optimization, to
reinitialize neuronal searches to escape local optimal
solutions.

• We validate the effectiveness of the proposed approach
through extensive experiments on six benchmark datasets,
showing improved clustering performance compared to
existing methods in terms of six indices.

The remaining paper is structured as follows. Section II in-
troduces essential preliminaries about neurodynamic optimiza-
tion. Section III discusses the problem formulation and refor-
mulation. Section IV describes the proposed neurodynamics-
driven algorithm. Section V elaborates on the experimental
results in six instances. Finally, Section VI provides the
concluding remarks.

II. PRELIMINARIES

A. Neurodynamic Optimization

1) Discrete Hopfield Network: DHN exemplifies a recurrent
neural network characterized by its binary or bipolar states
and a hard-limiter activation function [13]. Let W denote the
neuron connection weight matrix, and θ denote the neuron bias
vector. DHN operates in discrete time:{

u(t+ 1) = Wx(t)− θ,

x(t) = σ(u(t)),
(1)

where u is the net-input vector, x is the neural state vector,
and σ(·) is a vector-valued hard-limiter activation function
expressed element-wise:

σ(ui) =

{
0 if ui(t) ≤ 0,

1 if ui(t) > 0,

it is worth mentioning that for a search problem, the weights
W and threshold θ are fixed and are used to represent a cost
function.

As demonstrated in [13], the DHN is globally convergent
to the local minima of a combinatorial optimization problem
as follows:

min − 1

2
xTWx+ θTx,

s.t. x ∈ {0, 1}n. (2)

It is worth noting that the states of the DHN are determined
solely by the sign of the negative gradient of the objective
function (i.e., (1)) without being influenced by any historical
effect.

If W in (2) is not symmetric, an equivalent approach is to
replace it with (W + WT )/2. In the view that the binary
variables have x2

i = xi, i = 1, 2, . . . , n, a linear term
diag(w11, . . . , wnn)x is added to realize the zero diagonal
elements of W .

As a variant of the DHN, DHNm is proposed in [23], and
its neuronal states are updated as:{

u(t+ 1) = u(t) +Wx(t)− θ,

x(t) = σ(u(t)).
(3)

The DHNm in (3) considers historical effects and enhances its
dynamic behavior. As shown in [24], [25], the synchronously
activated DHNm in (3) is convergent to the local optima of
(2).

2) Collaborative Neurodynamic Optimization: Existing
collaborative neurodynamic optimization (CNO) approaches
utilize various neurodynamic models, including projection
neural networks (e.g., [26], [27]), discrete Hopfield networks
[22], [28]–[30], and Boltzmann machines [20], [29], [31]–[33].
Almost all of the CNO algorithms [20], [22], [28], [29] use a
particle swarm optimization rule in [34] as follows:

vi(t) = c0vi(t− 1) + c1r1(p
∗
i − pi(t− 1)) + c2r2(p

∗ − pi(t− 1)),
(4a)

if (r3 < S(vi(t))), then pi(t) = 1, else pi(t) = 0, (4b)

where pi denotes the present position of the i-th particle,
vi denotes the velocity determining the searching direction,
p∗i denotes the present best solution of the i-th particle, p∗

denotes the present best solution of a solution set, c0 is an
inertia weight, c1 is a cognitive learning factor, c2 is a social
learning factor, and r1, r2 ∈ [0, 1] are random constants, and
S(·) represents a sigmoid limiting transformation.

In a CNO approach, the diversity of initial states is essential
for effective search, often enhanced by mutation operations to
mitigate premature convergence. The diversity of initial states
is quantified as follows:

δ(p) =
1

Nn

N∑
i=1

∥p(i) − p∗∥2, (5)

where N denotes the population size (i.e., the total number of
neurodynamic models), n is the dimensionality of the solution,
p(i) is the initial states of the i-th neurodynamic model, and
p∗ is the current best solution across the entire population.

Bit-flip mutation, a commonly used mutation operator for
combinatorial optimization [35], is expressed as:

pj =

{
¬pj if κ ≤ Pm,

pj otherwise,
(6)

where ¬pj denotes the negation of pj , κ ∈ [0, 1] is a random
number, and Pm is a preset mutation probability.

III. PROBLEM FORMULATION

Let A ∈ {0, 1}m×n denote a binary data matrix, where
m is the number of rows (data points) and n is the num-
ber of columns (features). The goal is to identify a set
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Bicluster 1 

{row: 6, 7}

{column: 7, 10}

Bicluster 2 

{row: 1, 2, 12}

{column: 1, 2, 4, 5}

1

A particle swarm optimization rule using

von-Neumann topology

. . . . . .

DHN-M

DHN

DHN-M

DHN

DHN-M

DHN

DHN-M

DHN

. . .

Fig. 1. A schematic diagram of the CNO-BC algorithm.

of biclusters {Ik, Jk}nb

k=1, where Ik ⊆ {1, 2, . . . ,m} and
Jk ⊆ {1, 2, . . . , n} are the subsets of rows and columns,
respectively; nb is the number of desired biclusters. Each
bicluster should exhibit a specific pattern or high similarity
among its elements.

An approach to bi-clustering binary data is to solve a
binary matrix factorization (BMF) problem [36]. In the BMF
approach, the binary data matrix A is factorized approximately
as two lower-dimensional binary matrices X ∈ {0, 1}m×nb

and Y ∈ {0, 1}nb×n:
A ≈ XY,

where nb is the rank of the factorization, corresponding to the
number of biclusters. X and Y represent the memberships of
rows and columns to biclusters, respectively, and .

Consider the following BMF problem for biclustering:

min
X,Y

f(X,Y ) := ||XY −A||2F ,

s.t. X ∈ {0, 1}n×nb , Y ∈ {0, 1}nb×m, (7)

where || · ||F is the Frobenius norm. By minimizing the
objective function, it aims to find X and Y that capture

the underlying structure of A while preserving as much
information as possible.

IV. ALGORITHM DESCRIPTION

Let x̃i ∈ {0, 1}nb represent the i-th row of the matrix X ,
and let yj ∈ {0, 1}nb represent the j-th column of the matrix
Y , where i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

||XY −A||2F =
n∑

i=1

m∑
j=1

(x̃iyj − aij)
2 =

n∑
i=1

m∑
j=1

((x̃iyj)
2 − 2aij x̃iyj + a2ij) =

n∑
i=1

m∑
j=1

(yTj x̃
T
i x̃iyj − 2aij x̃iyj + a2ij). (8)

In view that x2
ik = xik and y2kj = ykj , the fourth-degree
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Algorithm 1: CNO-BC
Input: Data matrix A, population size N , termination

criterion M , ordered batch index sets
BX = {1, 2, . . . , nb} and BY = {1, 2, . . . , nb},
particle swarm optimization based parameters
c0, c1, and c2.

Output: X∗ and Y ∗.
1 For k = 1, 2, . . . , N , generate random initial neuronal

state matrices Xk(0) ∈ {0, 1}n×nb and
Yk(0) ∈ {0, 1}nb×m, velocity matrices
V X
k ∈ [−1, 1]n×nb , V Y

k ∈ [−1, 1]nb×m, set initial
group-best matrix and initial individual-best matrices
X∗ = X̄k = 0 and Y ∗ = Ȳk = 0. Set q = 0;

2 while q ≤M do
3 for k = 1 to N do
4 uX

k (0)← Xk(0)×m× nb,
uY
k (0)← Yk(0)× n× nb;

5 while (f(Xk(t), Yk(t))− f(Xk(t+ 1), Yk(t+
1)))/f(Xk(t), Yk(t)) < ϵ do

6 Update Xk(t) and Yk(t) according to (3)
with uX

k (t+ 1) and uY
k (t+ 1);

7 end
8 Shuffle the order of BX and BY ;
9 while Xk(t) ̸= Xk(t+ 1) and

Yk(t) ̸= Yk(t+ 1) do
10 Update every column of Xk(t) in the order

of BX according to (13) ;
11 Update every row of Yk(t) in the order of

BY according to (14) ;
12 end
13 if f(Xk, Yk) < f(X̄k, Ȳk) then
14 X̄k ← Xk and Ȳk ← Yk;
15 end
16 end
17 (X̂, Ŷ ) =

argmin{f(X1(t), Y1(t)), . . . , f(XN (t), YN (t))};
18 if f(X̂, Ŷ ) < f(X∗, Y ∗) then
19 X∗ ← X̂ , Y ∗ ← Ŷ , and q ← 0;
20 else
21 q ← q + 1;
22 end
23 for k = 1 to N do
24 Update Xk and Yk according to (4);
25 end
26 Compute δ(q) according to (5);
27 if δ(q) < δmin then
28 Perform the bit-flip mutation according to (6);
29 end
30 end
31 Select biclusters Sr and Sc according to (15);

monomial in (8)

yTj x̃
T
i x̃iyj =

nb∑
k=1

nb∑
l=1

xikxilykjylj =

nb∑
k=1

∑
l ̸=k

xikxilykjylj +

nb∑
k=1

xikykj . (9)

As a result,

||XY −A||2F =
n∑

i=1

m∑
j=1

{ nb∑
k=1

[∑
l ̸=k

xikxilykjylj +

(1− 2aij)xikykj
]
+ a2ij

}
. (10)

This expansion reformulates the original problem into a
higher-order binary optimization problem, which can be trans-
formed into a QUBO problem suitable for neurodynamic
optimization.

The problem in (10) is solved as two separate quadratic bi-
nary optimization problems: one concerning X while keeping
Y fixed, and the other concerning Y while keeping X fixed.

The partial derivatives of f(X,Y ) with respect to the ele-
ments xij and yjk are computed as follows, for i = 1, 2, . . . , n,
j = 1, 2, . . . , nb, and k = 1, 2, . . . ,m:

∂||XY −A||2F
∂xij

=
m∑

k=1

∑
l ̸=j

2xilylk + (1− 2aik)

 yjk, (11)

∂||XY −A||2F
∂yjk

=

n∑
i=1

∑
l ̸=j

2xilylk + (1− 2aik)

xij . (12)

In DHNs, the matrices X and Y represent the neuronal
states. Then, the activation functions for updating X and Y
are stated as follows:

UX(t+ 1) = −∇X ||X(t)Y (t)−A||2F ,

=

− m∑
k=1

∑
l ̸=j

2xilylk + (1− 2aik)

 yjk


ij

,

X(t) = g(UX(t)),
(13)

UY (t+ 1) = −∇Y ||X(t)Y (t)−A||2F ,

=

− n∑
i=1

∑
l ̸=j

2xilylk + (1− 2aik)

xij


jk

,

Y (t) = g(UY (t)).
(14)

Equation (11) reveals that the partial derivative of xij

is depends solely on xil for l ̸= j. This suggests that
neuronal states within each column of X can be updated
simultaneously. Similarly, Equation (12) demonstrates that the
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partial derivative of yjk is dependent only on ylk for l ̸= j,
suggesting that the neuronal states within each row of Y can
be updated concurrently. Consequently, both X and Y can be
synchronously updated in nb batches by updating the states
within the same column of X and the same row of Y .

The biclusters are selected as follows:

Srk = {i|xik = 1}, k = 1, ...nb (15)
Sck = {i|yki = 1}, k = 1, ...nb. (16)

Fig. 1 illustrates the framework of the proposed CNO-
BC algorithm. For the origin data, CNO-BC begins with a
population of DHNm’s (3) executing synchronously in the
first phase to perform coarse searches, followed by the second
phase, where DHNs (1) run synchronously in batches for fine
searches. The particle swarm optimization rule utilizing a von-
Neumann topology is applied to repeatedly reinitialize the
neuronal states after they converge to a local optimum. After
convergence, the factorized matrices X and Y are obtained,
and biclusters are selected based on the factorized matrices.

Algorithm 1 describes the neurodynamic-based binary ma-
trix factorization method for biclustering binary data. In the
proposed algorithm, Steps 5-7 involve asynchronously updat-
ing X and Y using multiple DHNms until the objective func-
tion’s decline rate falls below ϵ. Step 9 introduces randomness
by shuffling the ordered sets BX and BY to enhance solution
diversity. In Steps 9-12, each column of X from the randomly
shuffled index set BX and each row of Y from the randomly
shuffled index set BY are alternately updated using multiple
DHNs until convergence. Steps 13-15 and 17-22 refine the
individual-best and population-best solutions, respectively. In
Steps 23-25, the particle swarm optimization rule is applied to
X and Y to avoid local minimal solutions during the global
search. In Step 26, the diversity of the solution sets is assessed
using the metric in (5). If the diversity measure falls below
the predefined threshold δmin, the bit-flip mutation operator in
(6) is applied in Steps 27-29. Finally, in Step 31, biclusters
Sr and Sc are selected based on (15).

V. EXPERIMENTAL RESULTS

A. Performance Criteria

Evaluating the quality of biclusters obtained from binary
data matrices is crucial for assessing the performance of
biclustering algorithms. In this study, we employ several per-
formance metrics to quantitatively measure the effectiveness
of the biclustering results.

The Jaccard Index measures the similarity between the set
of elements in the bicluster and the set of elements in the
ground truth bicluster. It is defined as:

Jaccard Index =
|C ∩ T |
|C ∪ T |

,

where C is the set of indices (positions) of elements in the
bicluster, T is the set of indices of elements in the ground
truth bicluster, and | · | denotes the cardinality (number of
elements) of a set.
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DHN phase

20 25 30
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0
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DHN phase

80 85 90

(f) WebKB4

Fig. 2. Snapshots of f(X,Y ) in (7) during the inner loop of the CNO-BC
algorithm on the six datasets, where the blue dotted lines correspond to the
DHNm update phase (Steps 5-7), and the red lines represent the DHN update
phase (Steps 9-12).

Precision quantifies the proportion of correctly identified
positive elements (true positives) among all elements identified
as positive in the bicluster. It is defined as:

Precision =
NTP

NTP +NFP
,

where NTP = |C∩T | is the number of true positives (correctly
identified ones), and NFP = |C| −NTP is the number of false
positives (zeros incorrectly included).

Recall, also known as sensitivity or true positive rate,
measures the proportion of actual positive elements (ones) in
the ground truth that are correctly identified in the bicluster.
It is defined as:

Recall =
NTP

NTP +NFN
,

where NFN = |T |−NTP is the number of false negatives (ones
in the ground truth not included in the bicluster).
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TABLE I
THE MEAN VALUES AND STANDARD DEVIATIONS OF THE FIVE INTERNAL AND EXTERNAL INDICES VALUES USING CNO-BC AND THE FIVE BASELINES

ON BHATIA2017, GEB, LACLAU2016, LACLAU2016 OL, CSTR, AND WEBKB4, WHERE — INDICATES “NOT APPLICABLE”.

Datasets n m nb indices CCA xMotifs Bimax Plaid LAS CNO-BC

Bhatia2017 10 7 3

Jaccard Index↑ 0.1154 ± 0.0463 0.1237 ± 0.0429 0.3889 ± 0.0000 0.6614 ± 0.1851 0.6667 ± 0.0000 0.7667 ± 0.0373
Precision↑ 0.1421 ± 0.0624 0.1478 ± 0.0772 0.4222 ± 0.0000 0.7486 ± 0.1302 0.6667 ± 0.0000 0.8400 ± 0.0149

Recall↑ 0.2785 ± 0.1165 0.3333 ± 0.0806 0.5833 ± 0.0000 0.7090 ± 0.2200 0.6667 ± 0.0000 0.9167 ± 0.0000
F1-score↑ 0.1776 ± 0.0666 0.1903 ± 0.0659 0.4889 ± 0.0000 0.7146 ± 0.1853 0.6667 ± 0.0000 0.8508 ± 0.0213

NNG↑ -0.2241 ± 0.1441 -0.2473 ± 0.0949 0.3393 ± 0.0000 0.2527 ± 0.0554 0.2679 ± 0.0000 0.2976 ± 0.0000

GEB 47 4 2

Jaccard Index↑ 0.4524 ± 0.0000 0.4894 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 — 1.0000 ± 0.0000
Precision↑ 0.5000 ± 0.0000 0.4894 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 — 1.0000 ± 0.0000

Recall↑ 0.8261 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 — 1.0000 ± 0.0000
F1-score↑ 0.6230 ± 0.0000 0.6571 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 — 1.0000 ± 0.0000

NNG↑ 0.0000 ± 0.0000 -0.0270 ± 0.0000 0.6216 ± 0.0000 0.6216 ± 0.0000 — 0.6216 ± 0.0000

Laclau2016 20 20 3

Jaccard Index↑ 0.1167 ± 0.0000 0.1333 ± 0.0815 1.0000 ± 0.0000 0.5429 ± 0.1609 1.0000 ± 0.0000 1.0000 ± 0.0000
Precision↑ 0.1167 ± 0.0000 0.1333 ± 0.0815 1.0000 ± 0.0000 0.5429 ± 0.1609 1.0000 ± 0.0000 1.0000 ± 0.0000

Recall↑ 0.3333 ± 0.0000 0.3333 ± 0.0000 1.0000 ± 0.0000 0.5500 ± 0.1631 1.0000 ± 0.0000 1.0000 ± 0.0000
F1-score↑ 0.1728 ± 0.0000 0.1765 ± 0.0844 1.0000 ± 0.0000 0.5455 ± 0.1610 1.0000 ± 0.0000 1.0000 ± 0.0000

NNG↑ -0.5735 ± 0.0000 -0.1827 ± 0.4843 0.3333 ± 0.0000 0.1660 ± 0.0166 0.3333 ± 0.0000 0.3333 ± 0.0000

Laclau2016 OL 20 17 2

Jaccard Index↑ 0.3739 ± 0.0215 0.2701 ± 0.0062 0.5992 ± 0.0000 — 0.7889 ± 0.0000 1.0000 ± 0.0000
Precision↑ 0.5588 ± 0.0000 0.3175 ± 0.0118 0.8250 ± 0.0000 — 1.0000 ± 0.0000 1.0000 ± 0.0000

Recall↑ 0.5410 ± 0.0392 0.3922 ± 0.0052 0.6111 ± 0.0000 — 0.7889 ± 0.0000 1.0000 ± 0.0000
F1-score↑ 0.5432 ± 0.0230 0.3507 ± 0.0053 0.6656 ± 0.0000 — 0.8819 ± 0.0000 1.0000 ± 0.0000

NNG↑ 0.1626 ± 0.0663 0.1718 ± 0.0207 0.3524 ± 0.0000 — 0.4119 ± 0.0000 0.5220 ± 0.0000

CSTR 475 1000 4

Jaccard Index↑ 0.2936 ± 0.0512 0.0795 ± 0.0131 0.0490 ± 0.0000 — 0.2382 ± 0.0552 0.2537 ± 0.0168
Precision↑ 0.4293 ± 0.0656 0.1905 ± 0.0422 0.2381 ± 0.0000 — 0.7498 ± 0.1329 0.4142 ± 0.0155

Recall↑ 0.4191 ± 0.0662 0.2138 ± 0.0416 0.0495 ± 0.0000 — 0.2468 ± 0.0564 0.4190 ± 0.0323
F1-score↑ 0.4137 ± 0.0604 0.1339 ± 0.0192 0.0820 ± 0.0000 — 0.3623 ± 0.0834 0.3809 ± 0.0233

NNG↑ -2.4002 ± 0.0259 -0.8708 ± 0.2019 0.0026 ± 0.0000 — -0.2454 ± 0.0124 0.0127 ± 0.0000

WebKB4 4199 1000 4

Jaccard Index↑ 0.1172 ± 0.0156 0.1454 ± 0.0331 0.2517 ± 0.0000 0.0555 ± 0.0000 0.1824 ± 0.0016 0.2513 ± 0.0312
Precision↑ 0.2814 ± 0.0321 0.3514 ± 0.0593 0.3006 ± 0.0000 0.0804 ± 0.0000 0.6221 ± 0.0015 0.2955 ± 0.0164

Recall↑ 0.1799 ± 0.0214 0.2115 ± 0.0385 0.6673 ± 0.0000 0.1043 ± 0.0000 0.2019 ± 0.0015 0.6822 ± 0.0331
F1-score↑ 0.2075 ± 0.0239 0.2498 ± 0.0467 0.3669 ± 0.0000 0.0908 ± 0.0000 0.3003 ± 0.0021 0.3924 ± 0.0405

NNG↑ -0.5015 ± 0.0062 -0.1035 ± 0.0069 0.0132 ± 0.0000 -0.0017 ± 0.0000 -0.1789 ± 0.0018 0.0478 ± 0.0001

The F1-Score is the harmonic mean of precision and recall,
providing a single metric that balances both precision and
recall. It is defined as:

F1-Score = 2× Precision× Recall
Precision + Recall

.

As external indices are label-dependent and labels may
not be available, internal indices are preferred. In this paper,
we introduce an internal index called the normalized net
coverage (NNG). NNG measures correctly identified positive
elements (ones) and incorrectly included negative elements
(zeros) within bi-clusters, normalized by the total number of
ones, as follows:

NNG =
Nones −Nzeros

Ntotal ones
,

where Nones is the number of ones in biclusters, Nzeros is the
number of zeros in biclusters, and Ntotal ones is the total number
of ones in the data matrix. Specifically,

Nones =
∑
i∈I

∑
j∈J

aij ,

Nzeros = |I| × |J | −Nones,

Ntotal ones =
m∑
i=1

n∑
j=1

aij .

Substituting them into the NNG formula:

NNG =
Nones −Nzeros

Ntotal ones
=

2
∑

i∈I

∑
j∈J aij − |I| × |J |∑m

i=1

∑n
j=1 aij

.

It is worth noting that the NNG index may yield negative
values if the number of zeros exceeds that of ones within bi-
clusters. The maximum value of NNG (i.e., the perfect case)
is 1.

B. Experiment Setups
The parameters for the CNO-BC algorithm used in the

experiments are specified as follows. N = 10, M = 50,
c0 = 1, c1 = c2 = 2, ϵ = 0.01, δmin = 0.004, and Pm = 0.01.

The experiments are based on six datasets: Bhatia2017
[37], GEB1, Laclau2016 [38], Laclau2016 OL [38], CSTR2,
WebKB43, with their key parameters summarized in Table I.

The performance of CNO-BC is evaluated against five state-
of-the-art algorithms for bi-clustering: Cheng and Church’s
algorithm (CCA) [8], the extracting conserved gene expression
motifs algorithm (xMotifs) [9], the fast divide-and-conquer
algorithm (Bimax) [10], the plaid algorithm (Plaid) [11], the
large average submatrices algorithm (LAS) [12]. The codes of
CCA, xMotifs, Plaid, and LAS are obtained from a Python
package: biclustlib4. The code of Bimax is obtained from
Github5.

C. Neurodynamic Behaviors
Fig. 2 presents six snapshots depicting the convergence

behavior of the objective function (i.e., f(X,Y ) in (7)) as

1https://www.bionumerics.com/download/sample-data
2https://github.com/franrole/cclust package/tree/master/datasets
3https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
4https://github.com/padilha/biclustlib
5https://github.com/nikitasigal/biclustlib
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Fig. 3. The convergent behavior of CNO-BC.

a result of DHNm and DHN updates during the inner loop of
CNO-BC across six datasets. The blue dotted lines correspond
to the DHNm update phase (Steps 5-7), while the red lines
represent the DHN update phase (Steps 9-12). As shown in
Fig. 2, the objective function values consistently decrease and
stabilize, reaching stationary points within 90 iterations. It
indicates the efficient convergence behavior of the proposed
method.

Fig. 3 illustrates the convergence behavior of the objective
function f(X,Y ) using CNO-BC on the six datasets, with the
red envelopes indicating the f(X,Y ) values of the group-best
solutions. It demonstrates that the f(X,Y ) values decrease
monotonically, and CNO-BC achieves convergence within 250
iterations.

D. Performance Comparisons

Table I presents the mean values and standard deviations
of the five internal and external indices values obtained from
CNO-BC and the five baseline algorithms, averaged over 50
runs on the six datasets. As shown in Table I, the proposed
approach achieves better performance than the five baselines
statistically in terms of the five indices.

VI. CONCLUDING REMARKS

In this paper, we propose a neurodynamics-driven binary
matrix factorization approach for bi-clustering binary data. By
formulating the biclustering problem as a binary matrix fac-
torization problem, the proposed method achieves statistically
superior performance compared to the baselines, attributed to
the enhanced exploration capabilities of the discrete Hopfield
network, coupled with the highly effective optimization power
of the collaborative neurodynamic optimization framework.
Experimental results on benchmark datasets demonstrate the
effectiveness and superiority of the proposed approach in terms
of five internal and external indices. Future work may focus
on extending the approach to handle noisy or incomplete data,
exploring the incorporation of additional constraints or prior
knowledge, and applying the method to larger-scale problems
in real-world applications.
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