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Abstract—Index tracking is a passive investment strategy by
replicating a financial market index using its constituents. In
this paper, index tracking is addressed based on k-medoids
clustering. k-medoids clustering is formulated as a valuation-
constrained k-median problem to cluster index constituents. The
dissimilarity coefficients among stocks are measured by using
dynamic time warping. Experimental results of index tracking
on four major indices are elaborated to demonstrate that the
tracking performance of the proposed method with dynamic time
warping is superior to that with Pearson correlation coefficients.

Index Terms—Index tracking, k-medoids clustering, dynamic
time warping

I. INTRODUCTION

As a passive investing strategy, index tracking is carried out
by selecting a subset of index constituents via the minimization
of tracking errors of the returns between the portfolio and a tar-
get index. Index tracking has a desirable feature of infrequent
transactions resulting in relatively stable performance. Some
studies further indicate that merely following broad market
indices is an ideal investment strategy in stock markets [1],
[2].

Index tracking with all index constituents (also known
as full replication) is usually impracticable. It is infeasible
in some markets like Hang Seng, where shares are traded
in lots. Besides, it is not advisable because any change of
index constituents over an investment horizon requires the
rebalancing of the portfolio. In view of the shortcomings,
index-tracking with selected index constituents (also known
as partial replication or index sampling) is preferable and
commonly practised [3].

Existing studies mainly concentrate on cardinality-
constrained index-tracking that selects a given number of
subsets of stocks bounded by a given cardinality. There are
two issues in cardinality-constrained index tracking. One is the
selection of constituents, and the other is their corresponding
proportions. Numerous approaches for cardinality-constrained
index tracking have been studied in related literature [4],
[5] such as regression and clustering [6], [7]. Cluster-based
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cardinality-constrained index tracking has a wide application
in industry practice for the advantage of reducing turnover and
transaction costs and having comparatively high liquidity [8].
A stock selection approach based on clustering is developed
in [7] to track the S&P 500 index. However, those methods
are validated only on a specified index, not broadly applicable
to other indices. More recently, an index tracking algorithm
that optimizes both diversity and sparsity is proposed in [9]. A
quadratic unconstrained binary optimization (QUBO) problem
for k-medoids clustering [10] formulates the cluster-based
index tracking with a trade-off of centrality and sparsity [8].

Dynamic time warping (DTW) is an effective algorithm
for measuring the similarity between two temporal sequences
with widespread applications in financial data analysis. For
example, it is found that DTW captures the pattern of selecting
a portfolio of huge stocks to reduce the risks by hierarchical
clustering [11]. Entropic DTW kernels for stock price analysis
are developed in [12]. DTW is also used to extract the
representative price fluctuation patterns for cluster-based stock
price prediction [13].

In this paper, the cardinality-constrained index tracking
is addressed based on k-medoids clustering. Constrained k-
median clustering formulations are proposed. DTW is used
to measure the similarities of stocks over periods. To capture
the momentum of stock movements, a moving window with a
forgetting factor is used. Index constituents are clustered into
k clusters via k-medoids clustering and the medoids are used
as the exemplars for index tracking.

The remainder of this paper is organized as follows. Section
II provides preliminary information. Section III states the
problem formulations. Section IV reports the experimental
results of cluster-based index tracking on four stock market
datasets. Section VI concludes the paper.

II. PRELIMINARIES

A. k-medoids Clustering

k-medoids clustering represents a class of clustering al-
gorithms that group data by minimizing the within-cluster
dissimilarities with k data as the cluster medoids. Among
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several existing formulations, k-medoids clustering can be
formulated as a k-median problem [14], [15] as follows:

min
n∑
i=1

n∑
j=1

dijxij , (1a)

s.t.
n∑
j=1

xij = 1, i = 1, 2, ..., n, (1b)

n∑
j=1

xjj = k, (1c)

xij < xjj , i, j = 1, 2, ..., n, (1d)
xij ∈ {0, 1} , i, j = 1, 2, ..., n, (1e)

where dij denotes the dissimilarity coefficient between datum
i and j, xij is the binary decision variable denoted as xij = 1
if datum i is assigned to the cluster in which datum j is
the cluster medoid or xij = 0 otherwise, and n denotes the
amount of data. Objective function (1a) is the sum of intra-
cluster dissimilarities. Its value depends on which data are
selected as cluster medians, and their corresponding dissimi-
larity coefficients [15]. Constraints (1b) ensure that each datum
belongs to exactly one cluster. Constraint (1c) specifies the
required number of clusters. Constraints (1d) ensure that datum
i belongs to cluster j only if datum j is the cluster medoid.
Constraints in (1e) enforce the solution to be binary.
k-medoids clustering can be also formulated as a QUBO

problem [10] as follows:

min
z

{
βzTDe− α1

2
zTDz + θ(zT e− k)2

}
,

s.t. z = [z1, z2, z3, . . . , zn],

zj ∈ {0, 1} , ∀j ∈ V,

where D denotes dissimilarity coefficient matrix, k is the
number of exemplars to seek, zj is the binary decision variable
denoted as zj = 1 if datum j is an exemplar or zj = 0
otherwise, the trade-off parameter α weigh the k nodes that are
the most dispersed from other clusters, parameter β weigh the
k nodes that are the most central intra-cluster, θ is the penalty
coefficient to enforce feasibility, and e = [1, 1, 1, . . . , 1] ∈ Rn.
The last term is the penalty term that pushes the solution
z∗ to k non-zero entries. The QUBO problem is to find an
optimal combination of dispersed and central data using trade-
off parameters.

B. Dissimilarity coefficients

There are numerous measures of similarity or dissimilar-
ity coefficients for financial data processing; e.g., Pearson
correlation coefficients (PCC) and DTW-based dissimilarity
coefficients.

1) Pearson Correlation Coefficients: Given a pair of ran-
dom variables (X,Y ), the Pearson correlation coefficient ρ is
defined as the covariance of (X,Y ) divided by the product of
their standard deviations [16] as follows:

ρXY =
cov(X,Y )

σXσY
,

where σX and σY are the standard deviations of X and Y ,
respectively; cov is the covariance defined as

cov(X,Y ) = E[(X − µX)(Y − µY )],

E is the expectation operator; µX and µY are the means of
X and Y , respectively. Pearson correlation coefficient ρXY ∈
[−1, 1], where the zero value of ρXY means that there is no
linear correlation between X and Y . A dissimilarity coefficient
dXY is defined as dXY = 1− ρXY .

2) Dynamic Time Warping: DTW is a well-known method
for measuring similarities of two sequences time with optimal
alignment based on the Levenshtein distance (also called the
edit distance) [17], [18]. The distance of the optimal alignment
is recursively defined in a dynamic programming framework
by:

d (Ai, Bj) = δ(ai, bj) + min

 d(Ai−1, Bj−1),
d(Ai, Bj−1),
d(Ai−1, Bj)

 ,

where Ai is the subsequence (a1, . . . , aT ), Bj is the subse-
quence (b1, . . . , bT ), and δ is a distance between coordinates
of sequences. The DTW dissimilarity coefficient of two time
series is given by d(A|A|, B|B|) = d(AT , BT ).

III. PROBLEM FORMULATIONS

This section describes the moving window settings and the
constrained k-median problem formulation.

A. Moving Window Settings

To make the most use of available historical data, a moving
window is used instead of simply halving the dataset. A
forgetting factor is also used to filter the data with the
moving window, since historical stock data are time-sensitive,
more recent data should be given greater weight. Therefore,
an attenuating recursive window is used for setting training
datasets and test datasets, as illustrated in Fig. 1.

𝐷!"#

120 weeks

150 weeks

30 weeks

30 weeks

Training dataset

Training dataset

Testing
dataset

Training dataset

Testing
dataset

𝐷$ 𝐷% 𝐷& (𝐷$∗)

𝐷( (𝐷%∗)

. . . . . .

Trading weeks
(Approximately)

. . . . . .
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𝐷!"%

𝐷#

𝐷$ 𝐷% 𝐷&𝐷#
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Testing
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(𝐷!∗)𝐷$ 𝐷%

Fig. 1. Partition of training dataset and test dataset.

For period τ , the dissimilarity coefficient of each stock pair
is calculated by DTW and forms the DTW dissimilarity matrix
Dτ . Each Dτ is endowed with a forgetting factor. The total
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dissimilarity matrix D∗τ of the training sets at period τ is
defined as:

D∗τ = D1γ
τ+2 +D2γ

τ+1 + . . .+Dτ+3γ
0, τ = 1, 2, . . . , T

where Dτ denotes the dissimilarity matrix of period τ , T
denotes the total period amount, and the forgetting factor
γ ∈ [0, 1] is a control parameter in the attenuating recursive
window. If γ = 0, it is a rolling window that only uses the last
30-weeks historical data for exemplar selection. If γ = 1, it is
a recursive window that uses all historical data for exemplar
selection.

B. Constrained k-median problem formulation

As mentioned in Subsection II, cluster medoids can be
determined by solving the k-median or QUBO problems. In
the context of index tracking, these medoids can be used as the
stock exemplars to represent the clustered index constituents
for tracking the index. The weight of exemplar j in a tracking
portfolio is defined as [1]:

wj =

n∑
i=1

Pixij

n∑
j=1

n∑
i=1

Pixij

, i, j = 1, 2, ..., n,

where Pi denotes the market value of stock i,
n∑
i=1

Pixij is

the total market value of the clustered stocks represented
by exemplar j on the the last day in the training set, and
n∑
j=1

n∑
i=1

Pixij is the total value of the whole market on the the

last day in the training set.
A limitation of index tracking based on the k-median prob-

lem is that there is no control of the unsystematic risk of the
portfolio. The unsystematic risk is the difference between total
portfolio variation and systematic variation. In other words, it
is the variation due to attributes of individual stocks such as
financial fraud or crucial executive turnover. The k-median
problem does not consider a potential imbalance of market
valuation among clusters. If the market value falls heavily
in some clusters, the stock exemplars within this cluster are
endowed with high weights and the unsystematic risk of the
whole portfolio is greatly increased.

To limit the market value of each cluster, a valuation
constraint is defined for each cluster:

n∑
i=1

wixij ≤
1

k − k′
xjj , j = 1, 2, . . . , k, (2)

where wi denotes the weight of exemplar stock i, 1
k−k′ denotes

the upper bound weight for cluster containing stock j. This
constraint is effective if and only if xjj is a cluster median.
Parameter k′ ∈ (0, k), and k′ can be adjusted flexibly accord-
ing to the datasets. If k′ is too small, the problem would be
infeasible. If k′ is too large, constraint (2) will lose its effect.
The dissimilarity dij in the objective function (1a) is measured

by two measures: DTW, the proposed measure in this paper,
and PCC, the ordinary measure of dissimilarity. So far, the k
exemplar stocks and their corresponding cluster members have
been identified. With constraints (2), the problem is named
constrained k-median problem. Above all, the exemplars and
their corresponding proportions are determined.

IV. EXPERIMENTAL RESULTS

A. Benchmark Datasets

The experiments are based on the public datasets in
Beasley’s OR-Library [6]. These curated datasets contain 290
weekly price observations of constituent stocks. The stocks
that are not index constituents throughout the investment
horizon are removed. The market indices and their respective
number of constituents after data cleaning are shown in
Table I.

TABLE I
NUMBER OF CONSTITUENTS IN BENCHMARK DATASETS

Index Number of stocks

Hang Seng 31
S&P 100 98
FTSE 100 89
DAX 100 85

B. Setups

To set up multiple experiments for verification, a dataset
is divided into multiple subsets based on two considerations.
First, the length of the input data should be fixed to ensure
the fairness of the data. Second, more datasets should be
divided to verify the applicability of the proposed method.
If a dataset is split into one training set and one test set,
the experiment can only be conduct once which increases
the randomness of the results. Based on these reasons, the
weekly (daily) price data of a constituent stock is divided
into 30-week sequences as periods. Then, to cluster the index
constituents with similar temporal behaviors, the 30-week
price sequences are transformed to cumulative returns for
measuring dissimilarities. The portfolio is supposed to be
bought in the first week of the test period and held until the
end.

The cardinality in the experiments is ten; i.e., p = 10, the
same as those of the data providers [6]. For experiments of the
constrained k-median problem, the parameter p′ is set based
on previous experience which is initially set to be three to
reach a feasible solution and constrain the valuation on all
datasets. An exception happens for Hang Seng Index which
has 31 constituents only and it is infeasible if p′ = 3, so p′ is
chosen to be five to obtain feasible solutions.

The experiments are based on two tools. One is tslearn
[19], a python package used for DTW. The other is Gurobi, a
commercial mathematical optimization solver.
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Fig. 2. Performance in terms of ARMSE with different values of forgetting factor γ on four benchmark datasets.

TABLE II
TRACKING ERRORS ON HANG SENG

γ
KMP CKMP

ARMSEDTW ARMSEPCC ∆ ARMSEDTW ARMSEPCC ∆
0.0 0.0295 0.0461 0.0166 0.0257 0.0357 0.0100
0.1 0.0191 0.0291 0.0100 0.0188 0.0277 0.0088
0.2 0.0216 0.0289 0.0074 0.0230 0.0266 0.0036
0.3 0.0205 0.0394 0.0189 0.0244 0.0349 0.0106
0.4 0.0272 0.0398 0.0126 0.0282 0.0338 0.0056
0.5 0.0295 0.0260 -0.0035 0.0298 0.0283 -0.0015
0.6 0.0249 0.0456 0.0207 0.0262 0.0265 0.0003
0.7 0.0301 0.0321 0.0020 0.0284 0.0310 0.0026
0.8 0.0304 0.0354 0.0050 0.0296 0.0285 -0.0010
0.9 0.0276 0.0309 0.0033 0.0269 0.0306 0.0037
1.0 0.0274 0.0322 0.0048 0.0241 0.0296 0.0054

average 0.0262 0.0350 0.0089 0.0259 0.0303 0.0044

TABLE III
TRACKING ERRORS ON S&P 100

γ
KMP CKMP

ARMSEDTW ARMSEPCC ∆ ARMSEDTW ARMSEPCC ∆
0.0 0.0266 0.0404 0.0137 0.0311 0.0464 0.0152
0.1 0.0217 0.0497 0.0280 0.0246 0.0453 0.0207
0.2 0.0182 0.0452 0.0271 0.0277 0.0459 0.0182
0.3 0.0161 0.0433 0.0271 0.0216 0.0429 0.0213
0.4 0.0199 0.0390 0.0191 0.0210 0.0397 0.0187
0.5 0.0317 0.0399 0.0082 0.0250 0.0397 0.0146
0.6 0.0240 0.0324 0.0084 0.0271 0.0323 0.0052
0.7 0.0251 0.0358 0.0107 0.0254 0.0369 0.0114
0.8 0.0267 0.0289 0.0022 0.0289 0.0286 -0.0003
0.9 0.0227 0.0234 0.0008 0.0223 0.0238 0.0015
1.0 0.0248 0.0262 0.0014 0.0255 0.0259 0.0004

average 0.0234 0.0367 0.0133 0.0255 0.0370 0.0115
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TABLE IV
TRACKING ERRORS ON FTSE 100

γ
KMP CKMP

ARMSEDTW ARMSEPCC ∆ ARMSEDTW ARMSEPCC ∆
0.0 0.0238 0.0253 0.0016 0.0201 0.0235 0.0035
0.1 0.0221 0.0191 -0.0030 0.0237 0.0238 0.0001
0.2 0.0195 0.0235 0.0039 0.0244 0.0244 0.0000
0.3 0.0227 0.0261 0.0034 0.0247 0.0259 0.0012
0.4 0.0264 0.0254 -0.0010 0.0228 0.0262 0.0034
0.5 0.0266 0.0332 0.0067 0.0217 0.0331 0.0114
0.6 0.0288 0.0273 -0.0015 0.0220 0.0271 0.0051
0.7 0.0209 0.0242 0.0033 0.0183 0.0302 0.0119
0.8 0.0268 0.0249 -0.0019 0.0224 0.0249 0.0025
0.9 0.0254 0.0252 -0.0003 0.0219 0.0254 0.0035
1.0 0.0201 0.0252 0.0051 0.0165 0.0287 0.0122

average 0.0239 0.0254 0.0015 0.0217 0.0267 0.0050

TABLE V
TRACKING ERRORS ON DAX 100

γ
KMP CKMP

ARMSEDTW ARMSEPCC ∆ ARMSEDTW ARMSEPCC ∆
0.0 0.0495 0.0681 0.0186 0.0592 0.0638 0.0045
0.1 0.0624 0.0719 0.0096 0.0459 0.0704 0.0245
0.2 0.0540 0.0694 0.0154 0.0660 0.0696 0.0036
0.3 0.0568 0.0692 0.0124 0.0543 0.0675 0.0133
0.4 0.0593 0.0801 0.0208 0.0491 0.0721 0.0230
0.5 0.0502 0.0642 0.0140 0.0508 0.0683 0.0175
0.6 0.0674 0.0588 -0.0085 0.0502 0.0623 0.0121
0.7 0.0642 0.0741 0.0099 0.0541 0.0732 0.0191
0.8 0.0703 0.0477 -0.0225 0.0507 0.0704 0.0198
0.9 0.0531 0.0487 -0.0044 0.0525 0.0635 0.0110
1.0 0.0625 0.0642 0.0017 0.0413 0.0574 0.0161

average 0.0591 0.0651 0.0061 0.0522 0.0671 0.0150

C. Evaluation Criterion

Root-mean-square error (RMSE) as defined below is used
to evaluate the tracking performance for each test period:

RMSE =

√√√√ 1

n

n∑
i=1

(rindex − rportf)
2
,

where the cumulative returns r of the tracking-portfolio and
the target index are denoted as rportf and rindex, respectively. n
is the number of observations (weeks). The cumulative returns
are used for testing instead of log returns. A cumulative return
r is a percentage price change of a stock and is defined as:

r =
Pcur − Pori

Pori
,

where Pcur denotes the stock’s current price, Pori denotes the
stock’s original price.

The Average root-mean-square error (ARMSE) is defined
as the average RMSEτ over T test periods:

ARMSE =
1

T

T∑
τ=1

RMSEτ .

The ARMSE is a metric to evaluate the overall tracking
performance of index tracking methods.

D. Experimental Results

In the results, DTW-KMP and DTW-CKMP denote, respec-
tively, the k-median problem and the constrained k-median
problem based on DTW. PCC-KMP and PCC-CKMP denote,
respectively, the k-median problem and the constrained k-
median problem based on PCC.

1) DTW vs. PCC: Fig. 2 depicts the ARMSE with various
values of γ, where the blue lines are results using DTW,
and the yellow lines are results with PCC, the dash lines are
results based on KMP, and the solid lines are results based on
CKMP. The four subplots show the same pattern that the blue
lines are lower than the yellow ones, which means that DTW
outperforms PCC. These results verify that DTW captures the
features of stock series’ dissimilarity better and is a more
suitable measure for clustering stock price variations than
PCC. The blue lines in the upper two subplots illustrate that,
by using DTW, there is no significant difference between KMP
and CKMP in tracking Hang Seng or S&P 100. Nevertheless,
when tracking FTSE 100 and DAX 100 (results in the lower
two subplots), by using DTW, the results based on CKMP (the
blue dash lines) has smaller ARMSE than the results based
on KMP. This situation indicates that the imbalance of clusters
happens in tracking these two indices, and the valuation
constraint effectively reduces testing errors. Generally, DTW-
CKMP (the solid blue line) has the lowest ARMSE tracking
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Fig. 3. Average ARMSE on four benchmark datasets based on KMP (upper
subplot) and CKMP (lower subplot).

Fig. 4. Resulting clusters on tracking DAX 100 in period 5 (subplots of the
upper two subplots) and period 6 (lower two subplots).

four indices. The numerical results corresponding to Fig. 2 are
shown in Table II - V.

Fig. 3 depicts the averaged ARMSE across all γ by using
the proposed index tracking approach and its competitors on
the four datasets. The upper subplot shows the results based
on KMP, and the lower subplot shows the results based on
CKMP. It can be observed that the measure DTW reduces the
average ARMSE on each dataset.

2) KMP vs. CKMP: As mentioned, CKMP is for limiting
the extreme imbalance of resulting clusters. After checking
each clustering result, it is found that this imbalance situation
happens in tracking DAX 100 in period 5 and period 6 when
γ = 0.8. Their corresponding resulting clusters are shown in
Fig. 4 where the upper two subplots are for period 5, and
the lower two subplots are for period 6. The color indicates
exemplar’s weight (the number at the front), and the circle
size indicates stock amounts in one cluster (the number at
the back). It can be seen that the resulting clusters based
on KMP (the left two subplots) contains some large-weight
clusters which are dark red. However, in CKMP (the left two
subplots) results, all the clusters are orange, and no cluster
is dark red. It illustrates that the weight imbalance among
clusters is alleviated by adding the valuation constraint.

Fig. 5 and Fig. 6 show the cumulative returns based on
KMP and CKMP with γ = 0.3, respectively, and they are
for viewing the tracking performance more intuitively. Both
figures illustrate that using DTW leads to lower tracking errors
than using PCC.

The QUBO formulation for k-medoids clustering index-
tracking [8] as a comparison is also solved by Gurobi. The
tracking results of 6 test sets are shown in Fig. 7. Due
to the computational resource limitation, the experiments of
the QUBO formulation [8] (the PCC-QUBO in Fig. 7) is
only conducted tracking Hang Seng with a forgetting factor
γ = 0.3. It can be seen that the proposed DTW-KMP and
DTW-CKMP are superior to PCC-QUBO [8] in terms of both
solution speed and tracking accuracy.

V. CONCLUSION

In this paper, index tracking is carried out by means of k-
medoids clustering formulated as a valuation-constrained k-
median problem. The proposed valuation constraint has an
effect of limiting the tracking errors to avoid imbalanced
clustering results. Experimental results on four indices are
elaborated to compare, analyze, and demonstrate the track-
ing performance of the proposed approach against baselines.
Comparison studies show that the proposed approach based
on constrained k-median problem with DTW-based similarity
coefficients outperforms other approaches in terms of tracking
accuracy. Further investigations may aim to enhanced index
tracking based on neural networks [20], and multi-agent sys-
tems [21].

REFERENCES

[1] G. Cornuejols and R. Tutuncu, Optimization Methods in Finance.
Cambridge University Press, 2006.

357

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:25:57 UTC from IEEE Xplore.  Restrictions apply. 



0 25 50 75 100 125 150 175
Week

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cu
m
ul
at
iv
e 
re
tu
rn
s

Hang Seng
DTW
PCC
Hang Seng

0 25 50 75 100 125 150 175
Week

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e 
re
tu
rn
s

S&P 100
DTW
PCC
S&P 100

0 25 50 75 100 125 150 175
Week

0.0

0.2

0.4

0.6

0.8

Cu
m
ul
at
iv
e 
re
tu
rn
s

FTSE 100
DTW
PCC
FTSE 100

0 25 50 75 100 125 150 175
Week

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Cu
m
ul
at
iv
e 
re
tu
rn
s

DAX 100
DTW
PCC
DAX 100

Fig. 5. Cumulative returns based on KMP for tracking four benchmark indices (γ = 0.3).
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Fig. 6. Cumulative returns based on CKMP for tracking four benchmark indices (γ = 0.3).
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