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Abstract

Binary matrix factorization is an important tool for dimension reduction for high-dimensional datasets with binary
attributes and has been successfully applied in numerous areas. This paper presents a collaborative neurodynamic opti-
mization approach to binary matrix factorization based on the original combinatorial optimization problem formulation
and quadratic unconstrained binary optimization problem reformulations. The proposed approach employs multiple
discrete Hopfield networks operating concurrently in search of local optima. In addition, a particle swarm optimization
rule is used to reinitialize neuronal states iteratively to escape from local minima toward better ones. Experimental
results on eight benchmark datasets are elaborated to demonstrate the superior performance of the proposed approach
against six baseline algorithms in terms of factorization error. Additionally, the viability of the proposed approach is
demonstrated for pattern discovery on three datasets.

Keywords: Binary matrix factorization; collaborative neurodynamic optimization; discrete Hopfield network;
quadratic unconstrained binary optimization; pattern discovery.

1. Introduction

Binary matrix factorization (BMF) is an essential tool
for identifying discrete patterns within binary data. It ap-
proximates a given binary matrix V ∈ Rn×m by determin-
ing two factor matrices X ∈ Rn×r and Y ∈ Rr×m, where5

0 < r ≪ min (n,m), with the objective of minimizing the
Frobenius loss ||XY − V ||2F . It has various applications,
including graph partitioning (Chandran et al. (2017)), low-
density parity check coding (Ravanbakhsh et al. (2016)),
LED-display optimization (Kumar et al. (2019)), associ-10

ation rule mining (Koyutürk & Grama (2003)), structure
identification biclustering for gene expression (Zhang et al.
(2007); Zhang et al. (2010)), pattern discovery (Shen et al.
(2009a)), digits reconstruction (Meeds et al. (2006)), discrete-
attribute data mining (Koyuturk et al. (2005); Koyutürk15

et al. (2006)), market data clustering (Li (2005)), docu-
ment clustering (Zhang et al. (2007)), role-based access
control (Lu et al. (2008, 2014)), and etc.

The challenge in BMF lies in the combinatorial na-
ture of the optimization problem. In the view that the20
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BMF problem is NP-hard (Gillis & Vavasis (2018); Dan
et al. (2018)), approximation and heuristic methods are
widely used. Approximation methods allow X and Y to
take real values and then approximate solutions to the bi-
nary domain using certain predefined rules; e.g., Zhang25

et al. (2007); Slawski et al. (2013); Diop et al. (2017). Ex-
isting heuristic methods include the Proximus algorithm
(Koyutürk et al. (2002); Koyutürk & Grama (2003)), the
association rule-mining algorithm (Miettinen et al. (2008)),
the consensus algorithm (Fu et al. (2010)), the clustering-30

based algorithm (Jiang et al. (2014)), the divide-and-conquer
algorithm (Beckerleg & Thompson (2020)), and etc. Meta-
heuristic methods include the genetic algorithm (Snášel
et al. (2008)), etc.

In his seminal papers (Hopfield (1982); Hopfield & Tank35

(1986)), John Hopfield heralds that the networks of sim-
ple and similar neurons collectively can serve as powerful
computation models (known as Hopfield networks). Over
the past few decades, various neurodynamic optimization
models have emerged to solve diverse optimization prob-40

lems, such as nonconvex and global optimization problems
(e.g., Che & Wang (2019); Wei et al. (2024); Jin et al.
(2024)), nonsmooth pseudoconvex optimization (e.g., Liu
et al. (2022)) combinatorial optimization problems (e.g.,
Hopfield & Tank (1985); Che & Wang (2019)), and other45

related problems (Ju et al. (2023, 2024a,b)).
It is recognized that a single neurodynamic model en-
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counters difficulties in efficiently tackling combinatorial
optimization problems with binary variables, as a single
gradient-driven neurodynamic model may lead to local op-50

timal solutions. In recent years, the collaborative neurody-
namic optimization (CNO) approach has been developed
as a hybrid intelligence framework. It combines neuro-
dynamic optimization with evolutionary optimization for
solving various complex optimization problems. CNO em-55

ploys a population of individual neurodynamic optimiza-
tion models for exploring local optimal solutions and in-
corporates a meta-heuristic rule (e.g., particle swarm op-
timization), for updating initial neuronal states to escape
from local minima and facilitating the exploration of global60

optima. A mutation operator may be used to maintain di-
versity in initial neuronal states for preventing premature
convergence. It is proven in Yan et al. (2017) that collab-
orative neurodynamic approaches are almost surely con-
vergent to the global optimal solutions of the optimization65

problems (Yan et al. (2014); Che & Wang (2019); Che &
Wang (2021)). In the framework of collaborative neurody-
namic optimization, several approaches are developed for
solving nonconvex and global optimization problems (e.g.,
Yan et al. (2014); Che & Wang (2019); Xia et al. (2024)),70

distributed optimization (e.g., Jia et al. (2024); Huang
et al. (2024)), distributed minimax optimization (e.g., Xia
et al. (2023)), and combinatorial optimization problems
(e.g., Che & Wang (2019); Che & Wang (2021)). CNO
approaches are used as computationally intelligent opti-75

mizers in various applications such as nonnegative matrix
factorization (Che & Wang (2018)), bicriteria sparse non-
negative matrix factorization (Che et al. (2023)), Boolean
matrix factorization (Li et al. (2022)), financial portfolio
selection (Leung et al. (2022); Leung & Wang (2022)), and80

sparse signal reconstruction (Che et al. (2022)).
In this paper, we propose a neurodynamic-driven al-

gorithm for BMF in the framework of CNO (CNO-BMF).
The proposed algorithm consists of a phase with DHNm’s
updated synchronously and another phase with DHNs up-85

dated synchronously in batches. It leverages multiple dis-
crete Hopfield networks and a particle swarm optimization
update rule to reinitialize discrete Hopfield networks for
escaping from local optima and moving toward global op-
timal solutions. We demonstrate its superior performance90

against six prevailing baselines in terms of factorization
loss. In addition, we also apply the proposed approach for
pattern discovery on three datasets.

The contributions of this work are summarized as fol-
lows.95

i. We propose the CNO-BMF algorithm utilizes effi-
cient exploration capability of discrete Hopfield net-
work with momentum term in scattered searches and
the gradient-free updating feature of a particle swarm
optimization rule to reposition the neuronal searches100

escaping from local minima.

ii. We experimentally demonstrate that the CNO-BMF

algorithm statistically outperforms six prevailing base-
lines in terms of factorization loss.

iii. We experimentally illustrate the effectiveness of the105

CNO-BMF algorithm applied in pattern discovery.

The remainder of this paper is arranged as follows. The
preliminaries on discrete Hopfield network and collabora-
tive neurodynamic optimization are provided in Section 2.
The problem formulation is stated in Section 3. The de-110

tails of the CNO-BMF algorithm are presented in Sec-
tion 4. Experimental results on eight datasets are reported
in Section 5. A specific application of BMF on pattern dis-
covery is provided in Section 6. The paper is concluded in
Section 7.115

2. Preliminaries

2.1. Discrete Hopfield Network

The discrete Hopfield network (DHN) stands as a clas-
sic recurrent neural network distinguished by its binary or
bipolar states and activation function operating in discrete
time as follows (Hopfield (1982)):{

u(t+ 1) = Wx(t) + θ,

x(t) = g(u(t)),
(1)

where u ∈ ℜn is the net-input vector, x ∈ ℜn is the state
vector, W ∈ ℜn×n is the connection weight matrix, θ ∈ ℜn

is the threshold vector, and σ(·) is a vector-valued dis-
continuous activation function defined element-wisely as
follows:

g(ui) =

{
0, ui(t) ≤ 0,

1, otherwise.

It is demonstrated in (Hopfield (1982)) that DHN in (1)
is globally stable at an equilibrium x̄ (i.e., limt→∞ x(t) =
x̄) provided that the connection weight matrix is symmet-
ric (i.e., W = WT ), the main diagonal elements of W
are zero (i.e., wii = 0, ∀i), and the activation is carried
out asynchronously. Furthermore, it is demonstrated in
Hopfield (1982) that the DHN globally converges to a lo-
cal minimum of the following combinatorial optimization
problem:

min
x
− 1

2
xTWx− θTx,

s.t. x ∈ {0, 1}n. (2)

An equilibrium point x̄ of the discrete Hopfield network
is a local optimum for the optimization problem above. It
is noteworthy that the right-hand side of eqn. (1) is the120

positive gradient of the objective function to be maximized
or the negative gradient of the objective function to be
minimized. In essence, the neurodynamics of the DHN
form a discrete gradient flow, moving among the vertices
of the unit hypercube coordinate-wisely.125
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Given the binary nature of state variable xi ∈ {0, 1}, it
follows that x2

i = xi for i = 1, 2, . . . , n. Consequently, the
diagonal elements of the weight matrix in the quadratic
term of (1) can always be set to zeros by introducing an
equivalent linear term diag(w11, . . . , wnn)x.130

The DHN’s solution quality depends on the sequence
of activations. For certain W possessing special proper-
ties, synchronous activation in batches may mitigate the
sequence dependence of solution quality. Various methods
are developed for synchronous activation of neuronal states135

in batches; e.g., Cernuschi-Fŕıas (1989); Likas & Stafy-
lopatis (1996); Lee (1999); Muñoz-Pérez et al. (2011). For
example, the DHN is still convergent to a local minimum if
the neurons without any direct connections are activated
synchronously in batches (Muñoz-Pérez et al. (2011)).140

A DHN with a momentum term (DHNm) is introduced
(Takefuji & Lee (1989)) with the following neurodynamic
equation: {

u(t) = u(t− 1) +Wx(t)− θ,

x(t+ 1) = σ(u(t)).
(3)

DHNm (3) takes historical effects into account and en-
riches its dynamic behaviors by including the momentum
term u(t − 1). It has been demonstrated that the syn-
chronously activated neuronal states of DHNm (3) are con-
vergent to a local optimum of (2) (Takefuji & Lee (1991);145

Galán-Maŕın & Muñoz-Pérez (2001)).

2.2. Collaborative Neurodynamic Optimization

In the existing CNO paradigms, projection neural net-
works (e.g., Wang et al. (2020)) and DHNs (e.g., Wang
et al. (2021)) are often used for local searches. A particle
swarm optimization rule is used in almost all of the CNO
algorithms to reposition the initial states of the neurody-
namic models. Among the various particle swarm opti-
mization rules, the von Neumann topology stands out as
an effective and well-studied variant (Kennedy & Mendes
(2002)). In this topology, particles are organized in a grid-
like structure, forming a lattice of interconnected neigh-
borhoods. Let p∗i denote the best position found by the
i-th particle individually, pi denote the position vector of
the i-th particle, l∗i denotes the best neighbor of the i-th
particle on all four sides of the two-dimensional lattice, and
N denote the number of particles. The velocity vi and the
position pi, for i = 1, 2, . . . , N , are updated as follows:

vi(t+ 1) = c0vi(t) + c1r1(p
∗
i (t)− pi(t))+

c2r2(l
∗
i (t)− pi(t)),

if (r3 < S(vid(t))), then pid(t) = 1, else pid(t) = 0,

(4)
where c0 is an inertia parameter, c1, c2 are two acceleration
constants, r1, r2, r3 ∈ [0, 1] are three random numbers, and
S(·) is a sigmoid limiting transformation.150

The diversity of global search is non-negligible in global
and combinatorial optimization in the presence of convex-
ity in objective functions or solution spaces. A simple

diversity measure is defined as:

δ(x) =
1

Nn

N∑
i=1

∥pi − p∗∥2, (5)

where n is the dimension of solutions, and p∗ is the best
solution among the N solutions.

In the literature, many mutation operators are used to
ensure solution diversity. In particular, the following bit-
flip mutation operation is defined in Zhang et al. (2014):
if δ(x) < δmin, then

xj =

{
¬xj if ξj ≤ ρ,

xj otherwise ,
(6)

where δmin is a threshold, x̄j is the negation of xj , ξj is
a randomly generated number in the range of [0, 1], ρ is a
mutation probability.155

3. Problem Formulations

Consider the following binary matrix factorization prob-
lem:

min
X,Y

f(X,Y ) := ||XY − V ||2F ,

s.t. X ∈ {0, 1}n×r, Y ∈ {0, 1}r×m, (7)

where || · ||F is the Frobenius norm, V ∈ {0, 1}n×m is a
given matrix of binary data, X and Y are unknown ma-
trices of binary factors.

Let x̃i ∈ {0, 1}r denote the i-th row of X and yj ∈160

{0, 1}r denote the j-th column of Y for i = 1, 2, . . . , n; j =
1, 2, . . . ,m.

||XY − V ||2F =

n∑
i=1

m∑
j=1

(x̃iyj − vij)
2 =

n∑
i=1

m∑
j=1

((x̃iyj)
2 − 2vij x̃iyj + v2ij) =

n∑
i=1

m∑
j=1

(yTj x̃
T
i x̃iyj − 2vij x̃iyj + v2ij). (8)

In view that x2
ik = xik and y2kj = ykj , the fourth-degree

monomial in (8)

yTj x̃
T
i x̃iyj =

r∑
k=1

r∑
l=1

xikxilykjylj =

r∑
k=1

∑
l ̸=k

xikxilykjylj +

r∑
k=1

xikykj . (9)

As a result,165

||XY − V ||2F =

n∑
i=1

m∑
j=1

{ r∑
k=1

[∑
l ̸=k

xikxilykjylj +

(1− 2vij)xikykj
]
+ v2ij

}
. (10)
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4. Algorithm Description

To facilitate BMF, the problem in (10) is treated as
two quadratic binary problems, one in X with fixed Y ,
and the other in Y with fixed X.

The partial derivatives of the objective function in f(X,Y )
with respect to the elements xij and yjk are derived as fol-
lows, for i = 1, 2, . . . , n; j = 1, 2, . . . , r; k = 1, 2, . . . ,m:

∂||XY − V ||2F
∂xij

=

m∑
k=1

∑
l ̸=j

2xilylk + (1− 2vik)

 yjk, (11)

∂||XY − V ||2F
∂yjk

=

n∑
i=1

∑
l ̸=j

2xilylk + (1− 2vik)

xij . (12)

In DHNs,X and Y denote matrix-value neuronal states.
Based on the derived partial derivatives in (11) and (12),
the activation functions of DHNs for updating X and Y
in BMF are written as follows, respectively:

UX(t+ 1) = −∇X ||X(t)Y (t)− V ||2F ,

=

− m∑
k=1

∑
l ̸=j

2xilylk + (1− 2vik)

 yjk


ij

,

X(t) = g(UX(t)),
(13)

UY (t+ 1) = −∇Y ||X(t)Y (t)− V ||2F ,

=

− n∑
i=1

∑
l ̸=j

2xilylk + (1− 2vik)

xij


jk

,

Y (t) = g(UY (t)).
(14)

Eqn. (11) shows the partial derivative of xij exclusively170

depends on xil, where l ̸= j. It implies that the neu-
ronal states in the same column of X can be updated syn-
chronously. Similarly, Eqn. (12) shows the partial deriva-
tive of yjk exclusively depends on ylk, where l ̸= j, imply-
ing that the states in the same row of Y can be updated175

synchronously. As a result, X and Y may be updated syn-
chronously in r batches in DHN by updating states in the
same column of X and the same row of Y .

Fig. 1 delineates the scheme of the proposed two-phase
CNO-BMF algorithm. CNO-BMF starts with the first180

phase by running a population of DHNm’s (3) synchronously
for coarse searches and follows with the second phase by
running DHNs (1) synchronously in batches for fine searches.
The particle swarm optimization rule in (4) is used to ini-
tialize the neuronal states repetitively upon their local con-185

vergence.

A particle swarm optimization rule using
von‐Neumann topology

. . . . . .

DHN‐M

DHN

DHN‐M

DHN

DHN‐M

DHN

DHN‐M

DHN

. . .
Initial 
states

Optimal
solution

Figure 1: A schematic diagram of the CNO-BMF algorithm.

Algorithm 1 details the CNO-based binary matrix fac-
torization. In the algorithm, Steps 6-8 are to asynchronously
update X and Y according to the DHNm rule until the de-
cline rate of the objective function value is lower than ϵ.190

Step 9 is to shuffle the ordered sets BX and BY to intro-
duce randomness for enhancing the diversity of solutions.
Steps 10-13 are to update every column of X in a ran-
domly ordered index set BX and every row of Y in a ran-
domly ordered index set BY alternately according to the195

DHN rule until convergence. Steps 14-16 and 18-23 are to
update individual-best and population-best solutions, re-
spectively. Steps 24-26 are to update X and Y according
to the particle swarm optimization rule to escape from lo-
cal minima in the global search of optima. In Step 27, the200

diversity of the N sets of solutions is measured according
to (5). In Steps 28-30, the bit-flip mutation operator in (6)
is performed if the diversity measure is below the preset
threshold δmin.

5. Experimental Results205

5.1. Experiment Setups

In the experiments, the CNO-BMF parameters are set
as follows. The population size N is set to 10, and ter-
mination criteria M is set to 50. The termination criteria
for DHNm ϵ is set to 0.01. The diversity threshold δmin210

is set to 0.004, and the mutation probability ρ in (6) is
set to 0.01. In the particle swarm optimization rule in (4),
c0 = 1, c1 = c2 = 2.

The experiments are based on eight benchmark datasets:
Zoo1, Lymp2, Hepatitis3, Wine4, Audio5, Votes6, and Tic-215

1http://archive.ics.uci.edu/dataset/111/zoo
2https://archive.ics.uci.edu/dataset/63/lymphography
3https://archive.ics.uci.edu/dataset/46/hepatitis
4https://archive.ics.uci.edu/dataset/109/wine
5http://archive.ics.uci.edu/dataset/8/audiology+

standardized
6https://archive.ics.uci.edu/dataset/105/congressional+

4
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https://archive.ics.uci.edu/dataset/105/congressional+voting+records


Algorithm 1: CNO-BMF

Input: Data matrix V , population size N ,
termination criterion M , ordered batch
index sets BX = {1, 2, . . . , r} and
BY = {1, 2, . . . , r}, particle swarm
optimization based parameters c0, c1, and
c2.

Output: X∗ and Y ∗.
1 For k = 1, 2, . . . , N , generate random initial

neuronal state matrices Xk(0) ∈ {0, 1}n×r and
Yk(0) ∈ {0, 1}r×m, velocity matrices
V X
k ∈ [−1, 1]n×r, V Y

k ∈ [−1, 1]r×m, set initial
group-best matrix and initial individual-best
matrices X∗ = X̄k = 0 and Y ∗ = Ȳk = 0. Set
q = 0;

2 while q ≤M do
3 for k = 1 to N do
4 uX

k (0)← Xk(0)×m× r;

5 uY
k (0)← Yk(0)× n× r;

6 while (f(Xk(t), Yk(t))− f(Xk(t+
1), Yk(t+ 1)))/f(Xk(t), Yk(t)) < ϵ do

7 Update Xk(t) and Yk(t) according to

(3) with uX
k (t+ 1) and uY

k (t+ 1);

8 end
9 Shuffle the order of BX and BY ;

10 while Xk(t) ̸= Xk(t+ 1) and
Yk(t) ̸= Yk(t+ 1) do

11 Update every column of Xk(t) in the
order of BX according to (13) ;

12 Update every row of Yk(t) in the order
of BY according to (14) ;

13 end
14 if f(Xk, Yk) < f(X̄k, Ȳk) then
15 X̄k ← Xk and Ȳk ← Yk;
16 end

17 end

18 (X̂, Ŷ ) =
argmin{f(X1(t), Y1(t)), . . . , f(XN (t), YN (t))};

19 if f(X̂, Ŷ ) < f(X∗, Y ∗) then

20 X∗ ← X̂, Y ∗ ← Ŷ , and q ← 0;
21 else
22 q ← q + 1;
23 end
24 for k = 1 to N do
25 Update Xk and Yk according to (4);
26 end
27 Compute δ(q) according to (5);
28 if δ(q) < δmin then
29 Perform the bit-flip mutation according to

(6);

30 end

31 end

tac-Toe7, ORL (Samaria & Harter (1994)), with their ma-
jor parameters listed in Table 1.

The proposed CNO-BMF algorithm is compared with
seven prevailing algorithms for BMF: thresholding method
of BMF (BMF-TH) (Zhang et al. (2010)), the penalty220

objective formulation (referred to as ZH) (Zhang et al.
(2007)), the greedy algorithm for k-BMF (k-Greedy) (Ko-
vacs et al. (2021)), binary matrix factorization via col-
umn generation (BMF-CG-MIP(1)) (Kovacs et al. (2021)),
binary matrix factorization via column generation with225

Frobenius norm (BMF-CG-MIPF ) (Kovacs et al. (2021)),
and genetic algorithm for binary matrix factorization (BMF-
GA) (Snášel et al. (2008)). The code of BMF-TH is ob-
tained from the Github8 of the first author of Zhang et al.
(2010). The code of ZH is obtained from a Python pack-230

age: PyMF9. The codes of k-Greedy, BMF-CG-MIP(1),
and BMF-CG-MIPF are obtained from the Github10.

5.2. Neurodynamic Behaviors

Fig. 2 illustrates eight snapshots of the convergent be-
haviors of the objective function f(X,Y ) in (7) resulting235

from DHNm’s and DHNs in the inner-loop of CNO-BMF
on the eight datasets, where the blue dotted lines are for
the phase of DHNm updating (Steps 6-8) and the red line
is for the phase of DHN updating (Steps 10-13). Fig. 2
shows that the values of objective function monotonically240

decrease and reach stationary points within 210 iterations.
Fig. 3 depicts the convergent behaviors of f(X,Y ) using
CNO-BMF on the eight datasets, where the red envelopes
depict the objective functions of group-best solutions X∗

and Y ∗. It shows that the objective function values mono-245

tonically decline, and CNO-BMF converges within 350 it-
erations.

5.3. Ablation Studies

In the ablation studies, the performance of the two-
phase CNO-BMF algorithm with DHNm and DHN is com-250

pared with those of two one-phase ones (with DHNm or
DHN only). Fig. 4 illustrates eight snapshots of the con-
vergent behaviors of the objective function f(X,Y ) in (7)
resulting from DHNm on the eight datasets. As shown
in Fig. 4, DHNm takes much more iterations to converge255

(i.e., ranging from 5700 to 980000 iterations) than DHN
in the inner-loop of CNO-BMF (i.e., about 260 iterations)
as shown in Fig. 2.

Fig 5 depicts the Monte Carlo test results using CNO-
BMF with DHN (denoted as CNO-BMF/DHN) and CNO-260

BMF with DHNm-DHN (denoted as CNO-BMF/DHNm-
DHN) with three values of rank r on the eight datasets.

voting+records
7https://archive.ics.uci.edu/dataset/101/tic+tac+toe+

endgame
8https://github.com/ZhongYuanZhang/BMF
9https://github.com/rikkhill/pymf

10https://github.com/kovacsrekaagnes/rank_k_Binary_

Matrix_Factorisation
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Figure 2: Snapshots of the objective function values of f(X,Y ) in
(7) in the inner-loop of CNO-BMF on the eight datasets, where the
blue dotted line is in the phase of DHNm updating (Steps 6-8), and
the red line is the phase of DHN updating (Steps 10-13).
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Figure 3: The convergent behavior of CNO-BMF.
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Figure 4: Snapshots of the objective function values of f(X,Y ) in
(7) resulting from DHNm on the eight datasets.

As shown in Fig 5, CNO-BMF/DHNm-DNN consistently
outperforms CNO-BMF/DHN in terms of objective func-
tion value, especially for large values of r.
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Figure 5: Monte Carlo test results using CNO-BMF/DHN and CNO-
BMF/DHNm-DNN with three values of r on the eight datasets.

265

5.4. Performance Comparisons

In CNO-BMF, there are two hyper-parameters: the
DHN population size N and the minimum number of con-
secutive iterations M without further improvement as the
termination criterion. Fig 6 depicts the Monte Carlo test270

results using CNO-BMF with several values of N and M
on ZOO and Lymp. As shown in Fig 6, with increasing
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values of N or M , the value of f(X,Y ) resulting from
CNO-BMF declines. The objective function values always
reach their minima in all 100 runs if M ≥ 30 and N ≥ 10275

using CNO-BMF on ZOO (r = 2) and Lymp (r = 2). It
shows that CNO-BMF can almost ensure convergence to
global optima, provided that the values of N and M are
large enough depending on the complexity of the problem.

Table 1 records the mean values and standard devi-280

ations of the objective function values using CNO-BMF
(N = 10 and M = 50) and the six baselines over 50 runs
with random initialization on the eight datasets with nu-
merous rank values (r = 2, 3, 5, 10, 15). Table 1 shows
that CNO-BMF obtains the best results among the seven285

methods in terms of the mean values of errors on the eight
datasets with various rank values r. In addition, it also
shows that the larger the rank value, the smaller the fac-
torization error in the results obtained using CNO-BMF.

6. Pattern Discovery290

Pattern discovery is to identify meaningful patterns or
structures in a given matrix. It is an important task in
various fields, including data mining and machine learning
(Koyuturk et al. (2005); Jiang & Heath (2013)). BMF is
an approach for discovering binary patterns. It involves295

finding two binary matrices of a low rank (i.e., dominant
features) to minimize the difference between their matrix
product (i.e., Vr = XY ) and a given binary matrix (i.e., V )
(Koyuturk et al. (2005); Jiang & Heath (2013); Shen et al.
(2009a)). By approximating a given matrix, BMF aims300

to capture the most dominant features that may represent
patterns, whereas noise may be disregarded in the product
of the factorized matrices XY (Shen et al. (2009b); Luc-
chese et al. (2010); Lu et al. (2020); Liang et al. (2020)).

Consider 200 × 80 binary matrix with implanted pat-305

terns (i.e., V ) called PD1 shown in Fig. 7a as presented in
Lu et al. (2020), where a black point indicates an element
with the value of 1. As in Lu et al. (2020), each element
in V is flipped with probability 0.05, resulting in a noised
matrix Ṽ shown in Fig. 7b, where r = 5. Figs. 7c-7i show310

matrices resulting from factorized matrices (i.e., Z = XY )
using CNO-BMF and the six baselines with r = 5 on PD1.
As shown in Fig. 7, CNO-BMF is able to capture the un-
derlying seven patterns in the given matrix better than the
six baselines on PD1.315

To quantify the performance of CNO-BMF and six
baselines on various datasets with various rank values, two
additional datasets PD2 in Koyuturk et al. (2005) and
PD3 in Jiang & Heath (2013) are used in the experiments,
where noise points are added in the implanted pattern ma-320

trix according to the literature. Table 2 records the mean
values and standard deviations of the pattern discovery
error (i.e., ||Ṽ −XY ||F ), precision, and recall using CNO-
BMF (N = 10 and M = 50) and six baselines on the three
datasets (i.e., PD1, PD2, and PD3) with various rank val-325

ues (i.e., r = 2, 4, 6), where Ṽ represents the implanted
pattern matrix. As shown in Table 2, the mean values of

the pattern discovery error decrease with the increasing
rank values using CNO-BMF and the six baselines. CNO-
BMF consistently outperforms the baselines, in terms of330

the mean values of pattern discovery error and most of the
mean values of precision and recall on the three datasets
and various rank values. It indicates the ability of CNO-
BMF to capture meaningful patterns in binary matrices
accurately.335

7. Concluding Remarks

This paper presents a binary matrix factorization algo-
rithm based on collaborative neurodynamic optimization.
The proposed algorithm statistically outperforms the base-
lines owing to the combined use of a more powerful dis-340

crete Hopfield network and a more effective collaborative
neurodynamic optimization framework. Further investiga-
tions may aim at developing a more efficient binary matrix
factorization algorithm assisted by deep learning and rein-
forcement learning, and customizing the binary matrix fac-345

torization algorithm in specific application domains such
as associate rule mining, market basket data clustering,
and document clustering.
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Figure 6: Monte Carlo test results using CNO-BMF with several values of N and M on ZOO and Lymp.
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Table 1: The mean values and standard deviations of the objective function values using CNO-BMF (N = 10 and M = 50) and the six
baselines on Zoo, Lymp, Hepatitis, Wine, and Audio with numerous rank values (r = 2, 3, 5, 10, 15).

Dataset
(n×m)

rank
r

ZH BMF-TH k-Greedy BMF-CG-MIP(1) BMF-CG-MIPF BMF-GA CNO-BMF (herein)

Zoo
(101× 17)

2 308.9600 ± 32.9400 279.0000 ± 0.0000 404.5200 ± 35.3600 295.4000 ± 2.3800 297.0000 ± 0.0000 406.9200 ± 9.1500 276.0000 ± 0.0000
3 340.4400 ± 59.8200 225.7200 ± 2.2800 406.3200 ± 56.9500 228.6400 ± 8.7700 232.4800 ± 8.5100 432.5200 ± 15.3800 203.0000 ± 0.0000
5 391.3200 ± 52.0000 148.2800 ± 10.2500 406.2800 ± 85.4800 147.0800 ± 4.3800 152.0000 ± 8.1300 490.5600 ± 14.6200 135.8800 ± 8.3500
10 543.3600 ± 35.4100 124.5200 ± 23.1800 407.0800 ± 98.5900 282.5600 ± 45.3300 316.3200 ± 44.2900 763.2400 ± 32.5700 57.0800 ± 6.0900
15 620.1600 ± 39.4700 47.5600 ± 26.5600 401.4000 ± 97.6700 730.0400 ± 179.5100 637.7200 ± 146.1700 1830.0400 ± 157.2600 12.0800 ± 4.7100

Lymp
(148 ×44)

2 1346.7200 ± 68.3000 1271.3600 ± 0.8100 1389.3600 ± 56.8800 1277.8400 ± 15.5700 1341.7600 ± 57.9800 1503.3200 ± 15.3700 1195.4000 ± 1.9800
3 1305.4400 ± 71.7200 1229.3200 ± 3.3100 1449.1600 ± 77.7700 1283.0800 ± 26.4400 1423.6000 ± 65.8800 1643.7200 ± 27.7100 1112.9600 ± 6.9600
5 1407.5600 ± 78.4700 1205.9200 ± 30.9900 1580.5200 ± 162.7200 1330.9600 ± 82.0800 1654.4400 ± 136.3500 2385.6400 ± 66.1500 995.8800 ± 8.6900
10 1650.6400 ± 89.7300 1179.2000 ± 45.4300 1721.9600 ± 187.4700 1430.6000 ± 159.4100 2033.7200 ± 297.0200 8471.9200 ± 357.7300 749.3600 ± 13.0400
15 1811.5200 ± 60.0000 1024.8000 ± 69.1000 1796.0800 ± 207.9300 1424.7600 ± 177.8200 1954.8000 ± 372.3200 23064.4000 ± 1056.4200 545.6000 ± 13.4800

Hepatitis
(155 ×38)

2 1632.8800 ± 67.1700 1446.0000 ± 0.0000 1699.9600 ± 67.7700 1466.0400 ± 14.1300 1512.8400 ± 20.0200 1939.0400 ± 28.2600 1385.6000 ± 1.0800
3 1763.6800 ± 92.8800 1492.1200 ± 29.4000 1824.7200 ± 123.7500 1850.6400 ± 91.3500 2219.0000 ± 370.2700 2080.0800 ± 24.7300 1295.2000 ± 19.1300
5 2193.4000 ± 147.2800 1549.1200 ± 39.1600 2032.6000 ± 151.2500 2086.3600 ± 220.1700 3255.2400 ± 583.5400 2484.1600 ± 45.1300 1183.7200 ± 21.3000
10 2609.1600 ± 83.4200 1669.9200 ± 82.6600 2341.3200 ± 167.8700 2540.9600 ± 279.7800 4892.7200 ± 773.6400 5923.5200 ± 327.9000 907.1200 ± 25.6900
15 2746.3200 ± 38.2500 1601.8800 ± 131.4600 2523.0800 ± 182.5900 2936.3200 ± 598.0300 5195.5600 ± 1475.7500 16426.3200 ± 898.4100 662.4800 ± 21.7100
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(a) Original matrix V (b) noise-corrupted
matrix Ṽ

(c) Recovered matrix
using BMF-TH

(d) Recovered matrix
using ZH

(e) Recovered matrix
using k-Greedy

(f) Recovered ma-
trix using BMF-CG-
MIP(1)

(g) Recovered ma-
trix using BMF-CG-
MIPF

(h) Recovered matrix
using BMF-GA

(i) Recovered matrix
using CNO-BMF

Figure 7: Original matrix, noise-corrupted matrix, and recovered
matrices from factorized matrices (i.e., XY ) using CNO-BMF and
the six baselines (r = 5) on PD1.

Table 2: The mean values and standard deviations of the pattern
discovery error, precision, and recall using CNO-BMF and six base-
lines on the three datasets with various rank values.

Datasets Rank Method ||V −XY ||F Precision Recall

PD1

r = 2

ZH 10018.5200 ± 1531.2859 0.3448 ± 0.0874 0.2399 ± 0.0481
BMF-TH 3151.9600 ± 0.2000 0.8099 ± 0.0006 0.7894 ± 0.0010
k-Greedy 13933.2400 ± 896.2378 0.1516 ± 0.0283 0.1461 ± 0.0390
BMF-CG-MIP(1) 9409.0000 ± 0.0000 0.3925 ± 0.0000 0.3273 ± 0.0000
BMF-CG-MIPF 9409.0000 ± 0.0000 0.3925 ± 0.0000 0.3273 ± 0.0000
BMF-GA 5889.9200 ± 118.4936 0.6944 ± 0.0296 0.4384 ± 0.0252
CNO-BMF (herein) 3143.6800 ± 6.5302 0.8297 ± 0.0140 0.7622 ± 0.0200

r = 4

ZH 12704.1200 ± 1298.1619 0.1651 ± 0.0539 0.1132 ± 0.0397
BMF-TH 814.5600 ± 17.8397 0.9427 ± 0.0084 0.9558 ± 0.0093
k-Greedy 21295.9600 ± 1325.2635 0.1503 ± 0.0260 0.1531 ± 0.0284
BMF-CG-MIP(1) 10123.2400 ± 98.5111 0.3518 ± 0.0051 0.3499 ± 0.0028
BMF-CG-MIPF 10069.0000 ± 0.0000 0.3546 ± 0.0000 0.3515 ± 0.0000
BMF-GA 7578.2000 ± 124.4495 0.4803 ± 0.0129 0.4081 ± 0.0176
CNO-BMF (herein) 805.5200 ± 6.4622 0.9550 ± 0.0042 0.9433 ± 0.0046

r = 6

ZH 14821.4000 ± 1884.4967 0.1048 ± 0.0345 0.0628 ± 0.0206
BMF-TH 884.8800 ± 363.2763 0.9098 ± 0.0613 0.8979 ± 0.0473
k-Greedy 18191.1200 ± 2055.9034 0.1158 ± 0.0262 0.1126 ± 0.0239
BMF-CG-MIP(1) 18240.0000 ± 0.0000 0.1688 ± 0.0000 0.2248 ± 0.0000
BMF-CG-MIPF 18240.0000 ± 0.0000 0.1688 ± 0.0000 0.2248 ± 0.0000
BMF-GA 10772.0800 ± 286.0868 0.3344 ± 0.0099 0.4302 ± 0.0157
CNO-BMF (herein) 0.9600 ± 3.3226 0.9999 ± 0.0003 1.0000 ± 0.0001

PD2

r = 2

ZH 5289.2400 ± 496.7100 0.3312 ± 0.0329 0.2808 ± 0.0254
BMF-TH 1823.0000 ± 0.0000 0.9049 ± 0.0000 0.6243 ± 0.0000
k-Greedy 4489.4000 ± 287.1283 0.4261 ± 0.0508 0.2810 ± 0.0515
BMF-CG-MIP(1) 4797.0000 ± 0.0000 0.3566 ± 0.0000 0.1980 ± 0.0000
BMF-CG-MIPF 4797.0000 ± 0.0000 0.3566 ± 0.0000 0.1980 ± 0.0000
BMF-GA 3145.6800 ± 117.8706 0.7576 ± 0.0183 0.3502 ± 0.0450
CNO-BMF (herein) 1814.0000 ± 0.0000 0.9337 ± 0.0000 0.6037 ± 0.0000

r = 4

ZH 7337.6400 ± 1174.8855 0.1485 ± 0.0775 0.1084 ± 0.0525
BMF-TH 534.1600 ± 17.5919 0.9625 ± 0.0081 0.8956 ± 0.0071
k-Greedy 7262.6800 ± 903.2486 0.1938 ± 0.0390 0.1968 ± 0.0403
BMF-CG-MIP(1) 9507.0000 ± 0.0000 0.0756 ± 0.0000 0.0765 ± 0.0000
BMF-CG-MIPF 9643.0000 ± 0.0000 0.1036 ± 0.0000 0.1070 ± 0.0000
BMF-GA 3943.2800 ± 73.3965 0.5188 ± 0.0159 0.3257 ± 0.0265
CNO-BMF (herein) 520.3600 ± 35.9199 0.9734 ± 0.0106 0.8964 ± 0.0187

r = 6

ZH 8320.9600 ± 1171.4189 0.1214 ± 0.0363 0.0812 ± 0.0139
BMF-TH 701.1200 ± 176.7895 0.9405 ± 0.0336 0.8357 ± 0.0405
k-Greedy 7870.4000 ± 1172.6092 0.1898 ± 0.0581 0.2015 ± 0.0565
BMF-CG-MIP(1) 8238.4800 ± 419.8425 0.1688 ± 0.0020 0.1884 ± 0.0282
BMF-CG-MIPF 10059.0000 ± 0.0000 0.1330 ± 0.0000 0.1673 ± 0.0000
BMF-GA 5230.7200 ± 127.1402 0.3710 ± 0.0093 0.4045 ± 0.0229
CNO-BMF (herein) 67.5200 ± 13.9556 0.9978 ± 0.0009 0.9839 ± 0.0034

PD3

r = 2

ZH 12972.8400 ± 1811.7351 0.3164 ± 0.0812 0.2198 ± 0.0571
BMF-TH 4149.0000 ± 0.0000 1.0000 ± 0.0000 0.6043 ± 0.0000
k-Greedy 15796.4400 ± 775.1617 0.2117 ± 0.0431 0.2228 ± 0.0634
BMF-CG-MIP(1) 16118.0000 ± 0.0000 0.2033 ± 0.0000 0.2199 ± 0.0000
BMF-CG-MIPF 16118.0000 ± 0.0000 0.2033 ± 0.0000 0.2199 ± 0.0000
BMF-GA 7910.6400 ± 87.3508 0.6746 ± 0.0177 0.4522 ± 0.0169
CNO-BMF (herein) 3805.5200 ± 2.4000 0.8024 ± 0.0217 0.8471 ± 0.0282

r = 4

ZH 19038.2800 ± 2605.8536 0.1349 ± 0.0578 0.1240 ± 0.0508
BMF-TH 1834.6800 ± 438.8687 0.9578 ± 0.0196 0.8505 ± 0.0350
k-Greedy 20286.4800 ± 2062.2963 0.1128 ± 0.0431 0.1008 ± 0.0338
BMF-CG-MIP(1) 20347.0000 ± 0.0000 0.0715 ± 0.0000 0.0788 ± 0.0000
BMF-CG-MIPF 20347.0000 ± 0.0000 0.0715 ± 0.0000 0.0788 ± 0.0000
BMF-GA 10228.4400 ± 174.9076 0.4738 ± 0.0134 0.4054 ± 0.0218
CNO-BMF (herein) 747.2000 ± 16.0000 0.9687 ± 0.0089 0.9522 ± 0.0085

r = 6

ZH 23212.7600 ± 3481.1474 0.0656 ± 0.0238 0.0488 ± 0.0183
BMF-TH 558.0000 ± 284.5306 0.9717 ± 0.0338 0.9478 ± 0.0282
k-Greedy 19163.7600 ± 2081.0164 0.1437 ± 0.0328 0.1051 ± 0.0246
BMF-CG-MIP(1) 28821.0000 ± 0.0000 0.0977 ± 0.0000 0.1322 ± 0.0000
BMF-CG-MIPF 26689.0000 ± 0.0000 0.1047 ± 0.0000 0.1429 ± 0.0000
BMF-GA 15008.2000 ± 394.7454 0.3233 ± 0.0101 0.4379 ± 0.0139
CNO-BMF (herein) 65.2000 ± 3.2532 0.9896 ± 0.0016 0.9938 ± 0.0003
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