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Abstract—This paper addresses the travelling salesman prob-
lem (TSP) based on collaborative neurodynamic optimization
(CNO). In the CNO approach to TSP, a population of discrete
Hopfield networks are employed for searching local optimal
solutions and repeatedly reinitialized by using the particle swarm
optimization rule towards a global optimal solution. Experimen-
tal results for solving four TSP benchmarks are reported to
substantiate the efficacy of the CNO approach.

Index Terms—Travelling salesman problem, discrete Hopfield
network, collaborative neurodynamic optimization.

I. INTRODUCTION

The travelling salesman problem (TSP) is a classic com-
binatorial optimization problem. It is to find optimal tour
that visits every city exactly once for a given list of cities
with the minimum total distance and back to the starting city.
There are numerous areas of applications. Specific applications
include, but not limited to, the quadratic assignment problem,
scheduling problems, and many other intractable combinatorial
optimization problems [1].

The TSP is a well known NP-hard optimization problem
that has been studied extensively: e.g., [2] [3]. Due to its
computational complexity, it is used as a benchmark for
many combinatorial optimization methods, such as Nearest
Neighborhood Search (NNS), Simulated Annealing (SA), Tabu
Search (TS), Neural Networks (NN), Ant Colony Optimization
(ACO) and Genetic Algorithm (GA) [4].

With the advent of neural network research, a growing
number of neural network has been used to solve optimization
problems. John Hopfield points out that the networks of
simple and similar neurons collectively can serve as pow-
erful computation models in his seminal papers [5], [6]. In
particular, the discrete and continuous Hopfield networks in
[5], [6] are applied for linear programming and combinatorial
optimization including TSP [7]–[11]. Since 1990’s, numerous
neurodynamic models are developed for solving various opti-
mization problems such as linear and nonlinear programming

This work was supported in part by the Research Grants Council of the
Hong Kong Special Administrative Region of China under Grant 11208517,
Grant 11202318, and Grant 11202019.

(e.g., [7], [12]–[21]), nonsmooth optimization problems (e.g.,
[22], [23]), generalized convex optimization problems (e.g.,
[24], [25]), minimax optimization problems (e.g., [26], [27],
complex-valued optimization problems (e.g., [28]), distributed
optimization problems (e.g., [29], [30]), bi-level optimization
problems (e.g., [31]), and combinatorial optimization (e.g.,
[32], [33]). In recent years, collaborative neurodynamic op-
timization (CNO) approaches becomes viable for global and
combinatorial optimization [34]–[37]. In the CNO framework,
multiple neurodynamic models work in parallel in search for
local optimal solutions to a given optimization problem until
convergence and the search processes repeat with updated
initial states by using a meta-heuristic rule (e.g., PSO) in
search for a globally optimal solution. It is proven theoretically
and demonstrated experimentally that CNO approaches are
almost surely convergent to global optima of global and
combinatorial optimization problems [34]–[36], [38], [39].

In this paper, we propose a CNO approach to TSP based
on discrete Hopfield networks (DHNs). We first formulate
the TSP as a quadratic constrained binary optimization and
reformulate it into a quadratic unconstrained binary optimiza-
tion (QUBO) problem [40] via a penalty function converted
from equality constraints. Then we propose a collaborative
neurodynamic approach with a population of discrete Hopfield
networks re-initialized repeatedly by using a particle swarm
optimization update rule for solving the formulated QUBO
problem.

The remainder of this paper is organized as follows.
Section II provides necessary preliminary information. Sec-
tion III states the problem formulation. Section IV presents the
proposed neurodynamics-based approach to TSP. Section V
reports experimental results in four data sets. Section VI
concludes the paper.

II. PRELIMINARIES

A. Discrete Hopfield Network

The discrete Hopfield network is a archetypical recurrent
neural network characterized by its binary or bipolar states
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and activation function operating in discrete time [5]:

u(t) = Wx(t)− θ, (1)
x(t+ 1) = σ(u(t)), (2)

where u ∈ Rn is the net-input vector, x ∈ Rn is the state
vector, W ∈ Rn×n is the connection weight matrix, θ ∈ Rn is
the threshold vector, and σ(·) is a vector-valued discontinuous
activation function defined element-wisely as follows:

xi(t+ 1) = σ(ui) =

{
0 if ui(t) ≤ 0,

1 if ui(t) > 0.

It is shown that the discrete Hopfield network (2) is globally
stable at an equilibrium x̄ (i.e., limt→∞ x(t) = x̄), if the
connection weight matrix is symmetric (i.e., W = WT ), the
main diagonal elements of W is zero (i.e., wii = 0, ∀i), and
the activation is carried out asynchronously [5].

It is also shown [5] that the discrete Hopfield network
is globally convergent to a local minima of the following
combinatorial optimization problem with binary or bipolar
decision variables:

min − 1

2
xTWx+ θTx

s.t. x ∈ {0, 1}n. (3)

That is, an equilibrium x̄ is a local optimum of the opti-
mization problem above. Note that the right-hand side of eqn.
(1) is equal to the positive gradient of the objective function to
be maximized or negative gradient of he objective function to
be minimized. In other words, the DHN neurodynamics form
a discrete gradient flow moving among vertices of the unit
hypercube coordinate-wisely.

In view of the binary nature of state variable xi ∈ {0, 1},
x2i = xi for i = 1, 2, . . . , n. As a result, the diagonal
elements of the weight matrix in the quadratic term of (1)
can always set to be zeros and add an equivalently linear term
diag(w11, . . . , wnn)x.

The asynchronous activation of the discrete Hopfield net-
work entails a long convergence time. To expedite the con-
vergence of DHNs, it is better to activate the DHN neurons
synchronously in batches. In the literature, there are several
methods to activate neuronal states synchronously in batches
[41]–[44]. In particular, it has been proved in [44] that the
DHN is globally stable if the neurons are activated syn-
chronously in batches, where the neurons in a batch are not
directly connected.

B. Particle Swarm Optimization

Particle swarm optimization (PSO) is a class of meta-
heuristic optimization algorithms. Like scattered search, a
population of candidate solutions (so called particles) search
better solutions by exchanging information among them ac-
cording to their momentum and best known solutions from
their individual and grouped particles.

Let N denote the number of the particles in the swarm,
pi ∈ Rn denote the position vector of the ith particle
(candidate solution) and p∗i denote the best position found

by the ith particle individually (i = 1, 2, . . . , N ), p∗ denote
the best position known to the swarm (solution set). For
i = 1, 2, . . . , N , the velocity v and the position x are updated
towards its global best p∗ locations by the following updating
rules: 

vi(t+ 1) = c0vi(t) + c1r1(p∗i − pi(t))
+c2r2(p∗ − pi(t)),

pi(t+ 1) = pi(t) + vi(t+ 1),

(4)

where c0 ∈ [0, 1] is an inertia parameter, c1, c2 ∈ [0, 1] are
two acceleration constants, and r1, r2 ∈ [0, 1] are two random
numbers.

C. Collaborative Neurodynamic Optimization

It is challenging for an individual neurodynamic model to
solve some complex optimization problems such as global
optimization problems with nonconvex objective functions
or constraints and combinatorial optimization problems with
binary variables, as a single neurodynamic model may stuck
in a local minimum [45]. In recent years, several collaborative
neurodynamic optimization approaches with multiple neurody-
namic models are developed for solving distributed optimiza-
tion problems (e.g., [29], [30]), bi-level optimization problems
(e.g., [31]), nonconvex and global optimization problems (e.g.,
[34]–[36], [46]), multi-objective optimization (e.g., [30], [47]),
and combinatorial optimization problems (e.g., [36], [37]).

Collaborative neurodynamic optimization is a framework
of hybrid intelligence that designed for solving global op-
timization problems. It integrates the local search ability of
individual neurodynamic models together with the global
search ability of CNO approach. For global, combinatorial,
and multi-objective optimization, initial states of a group of
neurodynamic models are repetitively updated by using meta-
heuristics such as particle swarm optimization. It is proven that
a collaborative neurodynamic approaches are almost surely
convergent to the global optimal solutions of the optimization
problems [34]–[37], [46].

III. PROBLEM FORMULATIONS

A. Problem Formulation

Consider the following travelling salesman problem in a
vertex representation form [1]:

min
n∑
i=1

n∑
j=1

n∑
l=1,l 6=j

djlxijxi+1,l, (5a)

s.t.
n∑
i=1

xij = 1, j = 1, ..., n, (5b)

n∑
j=1

xij = 1, i = 1, ..., n, (5c)

xij ∈ {0, 1}, i, j = 1, ..., n. (5d)

where n is the number of cities, djl is the distance between
cities j and l, the decision variable xij = 1 means that the ith
stop is city j, and xn+1,k := x1,k.
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The objective function (5a) quantifies the total distance of
tour. Constraints in (5b) ensure that the salesman enter a city
only once. Constraints in (5c) ensure that the salesman leaves
each city only once. Constraints in (5b) and (5c) together
imply that X = [xij ] is a permutation matrix. As a result,
there are n! feasible solutions in the QAP. If the origin is
assumed to be given, the number of feasible solutions is re
are (n− 1)!.

The above formulation is known as the Euclidean TSP
where the distance matrix D = [djl] is symmetric (i.e.,
dlj = djl for all l, j).

B. Problem Reformulation

To facilitate subsequent reformulation, the objective func-
tion is rewritten as

f(x) =
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

γikdjlxijxkl,

where γik = 1 if k = i+ 1, j 6= l, else γik = 0.
Let D̂ ∈ Rn2×n2

and its elements be defined as

d̂(i−1)n+j,(k−1)n+l = γikdjl,

for i, j, k, l = 1, ..., n.
Let x = [x11, x12, ..., x1n, x21, x22, ..., x2n, ..., xnn]T ∈

{0, 1}n2

, The objective function f(x) is rewritten in a vector
form:

f(x) = xT D̂x.

To handle the constraints in (5b) and (5c), a quadratic
penalty function with two terms is defined as follows:

p(x) =
1

2
[

N∑
j=1

(

N∑
i=1

xij − 1)2 +

N∑
i=1

(

N∑
j=1

xij − 1)2].

Let

A =

[
I1 I2 · · · In
I I · · · I

]
∈ {0, 1}2n×n

2

,

e = [1, 1, ..., 1]T︸ ︷︷ ︸
2n

,

where Ii ∈ {0, 1}n is a matrix with ones in the ith row and
zeros in other rows.

The penalty function p(x) then can be rewritten as follow:

p(x) =
1

2
‖Ax− e‖2.

Let a penalized objective function be defined as follows:

fρ(x) = f(x) + ρp(x),

where ρ is a sufficiently large positive penalty parameter. The
penalized objective function is rewritten as follows:

fρ(x) = xT D̂x+
ρ

2
‖Ax− e‖2.

Based on the penalty function, the original problem in (5)
is reformulated into a QUBO problem as follows:

minimize fρ(x),

subject to x ∈ {0, 1}N
2

. (6)

It is known that problems (5) and (6) are equivalent in
terms of their optimal solutions if the penalty parameter is
sufficiently large [48].

Let

Ŵ = −[D̂T + D̂ + ρ(ATA)]

W = Ŵ − diag(ŵ11, ŵ22, ..., ŵn2n2) (7)

θ = −1

2
[ŵ11, ŵ22, ..., ŵn2n2 ]T − ρAT e (8)

where w(i−1)N+j,(k−1)N+l = −djl if i = k + 1 and
k 6= l, w(i−1)N+j,(k−1)N+l = −djl if i = k − 1 and
j 6= l, w(i−1)N+j,(k−1)N+l = −djl if i = 1, k = N
and j 6= l, w(i−1)N+j,(k−1)N+l = −djl if i = N ,
k = 1 and j 6= l, w(i−1)N+j,(k−1)N+l = −ρ if i = k
and j 6= l, w(i−1)N+j,(k−1)N+l = −ρ if i 6= k and
j = l, w(i−1)N+j,(k−1)N+l = 0 if i = k and j = l,
w(i−1)N+j,(k−1)N+l = 0 if i = k − 2, k − 3, ..., k − (N − 2)
and j 6= l, w(i−1)N+j,(k−1)N+l = 0 if i = k+2, k+3, ..., k+
(N − 2) and j 6= l and θ(i−1)N+j = −ρ.

The TSP is reformulated as problem (3) with W in (7) and
θ in (8).

IV. CNO-BASED ALGORITHMS

In this paper, the CNO approach to TSP employs a pop-
ulation of DHNs. It is shown in [44] that the neurons can
be activated synchronously in batches in 2n batches if n is
even and in 3n batches if n is odd. As a matter of fact,
finding the optimal partition of neurons without inter-neuron
connections is a combinatorial optimization problem. In this
study, by examining the distribution of zero elements in W , we
found that the neurons can be partitioned into 2n+ 1 batches
where the neurons in the same batch are not connected to
each other. As a result, neurons in the same batch can also be
activated synchronously. Algorithm 1 is designed to compute
the batches.

Algorithm 2 is designed to realize the DHN activated in
batches.
U(0, 1) denotes a random variable with image [0, 1],

P[0,1](x) denotes a projection function with image [0, 1], N
denotes the number of Hopfield networks, c0 ∈ [0, 1] is an
inertia parameter, c1, c2 ∈ [0, 1] are two acceleration constants,
Similar to the approach in [36], a CNO approach by using
multiple Hopfield networks is presented in Algorithm 3. Step
2 - step 7 employ a population of DHNs for scatter search.
Step 9 - step 12 update the global optimal solution. Step 15 -
step 20 reinitialize the state of DHNs.

V. EXPERIMENTAL RESULTS

A. Setups

There are large numbers of TSP test problem instances.
TSPLIB is such a collection of TSP instances [49]. In this
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Algorithm 1: Determining the batches of neurons
Input: The number of cities n.
Output: Batches of the neurons.

1 for i = 1 : 2n+ 1 do
2 ξ=i;
3 while ξ ≤n2 do
4 Add ξ to the bi, where bi is the index set of

the ith batch;
5 ξ ← i+ 2n+ 1;
6 end
7 end
8 return B.

Algorithm 2: The DHN activated in batches
Input: The number of cities n, Initial solution:

x1, x2, ..., xn2 , Graph G = (V,E) where V is the
set of vertices or nodes and E is the set of arcs
or edges between vertices, Batches of the
neurons B.

Output: Equilibrium x̄ of the DHN.
1 while ∆ = 1 do
2 ∆← 0;
3 for i=1:2n+1 do
4 for j=1:n2 do
5 if j ∈ bi then
6 uj ←

∑n2

k=1 wjkxk − θj ;
7 if xj 6= σ(uj) then
8 xj ← σ(uj);
9 ∆← 1

10 end
11 end
12 end
13 end
14 end
15 return x̄.

paper, we evaluate the proposed CNO approach on datasets
ulysses16, burma14, ulysses22 and bays29 [50], where the
number in name indicates the number of cities.

In this paper, the hyper-parameters setting is based on
Monte Carlo test. The selection of two hyper-parameters N
(population size) and M (termination criteria) in Algorithm
3 is based on a Monte Carlo test with 10-run from random
initial states on the data set burma14 and data set ulysses16.
Fig. 1 and Fig. 6 depict the Monte Carlo test results in terms
of mean values and standard deviations obtained by using the
CNO approach on burma14 and ulysses16 with several M and
N . As shown in Fig. 1, the objective function values reach
its minimum for most runs with M = 20 and N = 200 on
burma14. As shown in Fig. 6, the objective function values
reach its minimum for most runs with M = 20 and N = 300
on ulysses16. As a result, the two hyper-parameters are set as
M = 20 and N = 200 on burma14 and set as M = 20 and

Algorithm 3: TSP based on CNO approach
Input: Population size N , initial states

[y(1)(0), ..., y(N)(0)] ∈ {0, 1}n2×N , velocity
vector v(i) ∈ [−1, 1]n

2

, termination criteria M ,
termination counter m, penalty parameter ρ,
particle/group best solutions y(i)/ y∗,
f(y(i)) = f(y∗) =∞, PSO-based state
initialization parameters c0, c1 and c2.

Output: y∗.
1 while m ≤M do
2 for i = 1 to N do
3 Obtain the equilibrium state ȳ(i) of the ith

Hopfield network (Algorithm 2) with initial
state y(i)(0) and penalty parameter ρ by using
asynchronous iteration;

4 if f(ȳ(i)) < f(y(i)) then
5 y(i) ← ȳ(i);
6 end
7 end
8 i∗ = arg mini{f(y(1)), ..., f(y(i)), ..., f(y(N)};
9 if f(y(i

∗)) < f(y∗) then
10 y∗ ← y(i

∗);
11 m← 0;
12 else
13 m← m+ 1;
14 end
15 for i = 1 to N do
16 Update velocity v(i) = c0v

(i) +
c1U(0, 1)(y(i) − ȳ(i)) + c2U(0, 1)(y∗ − ȳ(i));

17 Update initial state y(i)(0) = y(i)(0) + v(i);
18 y(i)(0) = P[0,1](y

(i)(0));
19 y(i)(0) = round(y(i)(0));
20 end
21 end
22 return y∗.

N = 300 on ulysses16 in the experiments.
In Algorithm 3, the maximum number of iterations is set as

1500. In the PSO rule (4), c0 = 1 and c1 = c2 = 0.1.

B. Experimental Results

Fig. 2 and Fig. 7 depicts the batches of neurons on burma14
and ulysses16 respectively . The neurons in the same batches
can also be activated synchronously since they are not con-
nected to each other. Fig. 3, Fig. 8, Fig. 11 and Fig. 14 plots
four snapshots of the dynamic behaviors of a single DHN
(Algorithm 2) and its associated function values, including
transient states x, objective function f(x), penalty function
p(x) with ρ = 106 on burma14, ulysses16, ulysses22 and
bays29, respectively. Moreover, when the penalty function
reaches zero, the objective function and the penalized objective
function are equal. Fig. 4, Fig. 9, Fig. 12 and Fig. 15 illustrate
the convergent behavior of the CNO approach on burma14,
ulysses16, ulysses22 and bays29, respectively. Fig. 5, Fig. 10
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Fig. 1. Monte Carlo test results in terms of Mean values and standard
deviations obtained by using the CNO approach on burma14 with several
M and N .

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28

29 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 2. The batches of neurons generated by Algorithm 1 on the data set
burma14.

and Fig. 13 depict the tours on burma14, ulysses16, ulysses22
and bays29, respectively. Table I depicts the results in terms of
best/worst values, mean values, and standard deviations with
different data sets.

VI. CONCLUDING REMARKS

In this paper, a collaborative neurodynamic approach by
using a population of DHN activated in batches is used for
solving TSP. The TSP is formulated as a constrained binary
quadratic programming problem and is reformulated as a
QUBO problem with a penalty function. In the framework of
collaborative neurodynamic optimization framework, the ini-
tial states of a few hundreds of Hopfield networks are updated
based on particle swarm optimization. Experimental results are
elaborated to substantiate the efficacy of the approach to TSP.
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Fig. 3. Snapshots of neuronal states, objective function values and penalty
function values of DHN (Algorithm 2) on the data set burma14 with M = 20
and N = 200.

To improve the scalability of the collaborative neurody-
namic approach to the TSP, unsupervised, supervised, and
semi-supervised learning algorithms should be integrated. For
example, clustering, deep learning, and reinforcement learning
could be used to generate prior knowledge as TSP constraints
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TABLE I
THE RESULTS IN TERMS OF BEST/WORST VALUES, MEAN VALUES, AND STANDARD DEVIATIONS.

Data Set n # of solutions # of neurons # of batches M N optimum best / worst mean±std
burma14 14 6.2× 109 196 29 20 200 3323 3323 / 4033 3674±190
ulysses16 16 1.3× 1012 256 33 20 300 6859 6859 / 7828 7365±295
ulysses22 22 5.1× 1019 484 45 30 3000 7013 7013 / 8413 7695±354
bays29 29 3.0× 1029 841 59 30 3000 2020 2254 / 2839 2555±144
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Fig. 4. The convergent behavior of the CNO approach on the data set burma14
with M = 20 and N = 200.
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Fig. 5. Optimal tour with total distance 3323 obtained by using the CNO
approach on the data set burma14 with M = 20 and N = 200.

for to reduce temporal and spatial complexity of the proposed
neurodynamic approach.
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[10] P. M. Talaván and J. Yáñez, “Parameter setting of the hopfield network
applied to tsp,” Neural Networks, vol. 15, no. 3, pp. 363–373, 2002.

[11] K. C. Tan, H. Tang, and S. S. Ge, “On parameter settings of hopfield
networks applied to traveling salesman problems,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 52, no. 5, pp. 994–1002,
2005.

[12] Y. Xia and J. Wang, “A general methodology for designing globally
convergent optimization neural networks,” IEEE Transactions on Neural
Networks, vol. 9, no. 6, pp. 1331–1343, 1998.

462

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:08 UTC from IEEE Xplore.  Restrictions apply. 



0 20 40 60 80 100 120

0

1

O
u

tp
u

t 
s

ta
te

s

0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

O
b

je
c
ti

v
e
 f

u
n

c
ti

o
n

10
6

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
e
n

a
lt

y
 f

u
n

c
ti

o
n

10
4

Fig. 11. Snapshots of neuronal states, objective function values and penalty
function values of DHN (Algorithm 2) on the data set ulysses22 with M = 30
and N = 3000.

[13] ——, “A general projection neural network for solving monotone
variational inequalities and related optimization problems,” IEEE Trans-
actions on Neural Networks, vol. 15, no. 2, pp. 318–328, 2004.

[14] ——, “A recurrent neural network for solving nonlinear convex pro-

0 50 100 150 200 250

Iteration

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

T
h

e
 v

a
lu

e
 o

f 
o

b
je

c
ti

v
e

 f
u

n
c

ti
o

n

Fig. 12. The convergent behavior of the CNO approach on the data set
ulysses22 with M = 30 and N = 3000.

-0.1 0 0.1 0.2 0.3 0.4 0.5

Longitude

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

L
a

ti
tu

d
e

Fig. 13. Optimal tour with total distance 7013 obtained by using the CNO
approach on the data set ulysses22 with M = 30 and N = 3000.

grams subject to linear constraints,” IEEE Transactions on Neural
Networks, vol. 16, no. 2, pp. 379–386, 2005.

[15] S. Liu and J. Wang, “A simplified dual neural network for quadratic
programming with its KWTA application,” IEEE Transactions on Neural
Networks, vol. 17, no. 6, pp. 1500–1510, 2006.

[16] Y. Xia, G. Feng, and J. Wang, “A novel neural network for solving
nonlinear optimization problems with inequality constraints,” IEEE
Transactions on Neural Networks, vol. 19, no. 8, pp. 1340–1353, 2008.

[17] X. Hu and J. Wang, “An improved dual neural network for solving
a class of quadratic programming problems and its k-winners-take-all
application,” IEEE Transactions on Neural Networks, vol. 19, no. 12,
pp. 2022–2031, 2008.

[18] Q. Liu and J. Wang, “A one-layer recurrent neural network with a discon-
tinuous hard-limiting activation function for quadratic programming,”
IEEE Transactions on Neural Networks, vol. 19, no. 4, pp. 558–570,
2008.

[19] Q. Liu, T. Huang, and J. Wang, “One-layer continuous-and discrete-
time projection neural networks for solving variational inequalities and
related optimization problems,” IEEE Transactions on Neural Networks

463

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:08 UTC from IEEE Xplore.  Restrictions apply. 



0 20 40 60 80 100 120 140 160

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

O
b

je
c
ti

v
e
 f

u
n

c
ti

o
n

10
6

0 20 40 60 80 100 120 140 160

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
e
n

a
lt

y
 f

u
n

c
ti

o
n

10
4

Fig. 14. Snapshots of neuronal states, objective function values and penalty
function values of DHN (Algorithm 2) on the data set bays29 with M = 30
and N = 3000.

and Learning Systems, vol. 25, no. 7, pp. 1308–1318, July 2014.
[20] Y. Xia and J. Wang, “A bi-projection neural network for solving

constrained quadratic optimization problems,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 27, no. 2, pp. 214–224,
2016.

0 20 40 60 80 100 120 140 160 180

Iteration

2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

3200

T
h

e
 v

a
lu

e
 o

f 
o

b
je

c
ti

v
e

 f
u

n
c

ti
o

n

Fig. 15. The convergent behavior of the CNO approach on the data set bay29
with M = 30 and N = 3000.

[21] Y. Xia, J. Wang, and W. Guo, “Two projection neural networks with
reduced model complexity for nonlinear programming,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 31, no. 6, pp.
2020–2029, 2020.

[22] Q. Liu and J. Wang, “Finite-time convergent recurrent neural network
with a hard-limiting activation function for constrained optimization
with piecewise-linear objective functions,” IEEE Transactions on Neural
Networks, vol. 22, no. 4, pp. 601–613, 2011.

[23] ——, “A one-layer projection neural network for nonsmooth opti-
mization subject to linear equalities and bound constraints,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 24, no. 5,
pp. 812–824, 2013.

[24] X. Hu and J. Wang, “Solving pseudomonotone variational inequalities
and pseudoconvex optimization problems using the projection neural
network,” IEEE Transactions on Neural Networks, vol. 17, no. 6, pp.
1487–1499, 2006.

[25] Z. Guo, Q. Liu, and J. Wang, “A one-layer recurrent neural network for
pseudoconvex optimization subject to linear equality constraints,” IEEE
Transactions on Neural Networks, vol. 22, no. 12, pp. 1892–1900, 2011.

[26] Q. Liu and J. Wang, “A projection neural network for constrained
quadratic minimax optimization,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 26, no. 11, pp. 2891–2900, 2015.

[27] X. Le and J. Wang, “A two-time-scale neurodynamic approach to con-
strained minimax optimization,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 28, no. 3, pp. 620–629, 2017.

[28] S. Zhang, Y. Xia, and J. Wang, “A complex-valued projection neural
network for constrained optimization of real functions in complex vari-
ables,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 26, no. 12, pp. 3227–3238, 2015.

[29] Q. Liu, S. Yang, and J. Wang, “A collective neurodynamic approach
to distributed constrained optimization,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 8, pp. 1747–1758, 2017.

[30] S. Yang, Q. Liu, and J. Wang, “A collaborative neurodynamic approach
to multiple-objective distributed optimization,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 4, pp. 981–992,
April 2018.

[31] S. Qin, X. Le, and J. Wang, “A neurodynamic optimization approach to
bilevel quadratic programming,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 28, no. 11, pp. 2580–2591, Nov 2017.

[32] Z.-B. Xu, G.-Q. Hu, and C.-P. Kwong, “Asymmetric Hopfield-type
networks: theory and applications,” Neural Networks, vol. 9, no. 3, pp.
483–501, 1996.

[33] J. Wang, “Discrete Hopfield network combined with estimation of
distribution for unconstrained binary quadratic programming problem,”
Expert Systems with Applications, vol. 37, no. 8, pp. 5758 – 5774, 2010.

[34] Z. Yan, J. Wang, and G. Li, “A collective neurodynamic optimization ap-

464

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:08 UTC from IEEE Xplore.  Restrictions apply. 



proach to bound-constrained nonconvex optimization,” Neural Networks,
vol. 55, pp. 20–29, 2014.

[35] Z. Yan, J. Fan, and J. Wang, “A collective neurodynamic approach to
constrained global optimization,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 28, no. 5, pp. 1206–1215, 2017.

[36] H. Che and J. Wang, “A collaborative neurodynamic approach to global
and combinatorial optimization,” Neural Networks, vol. 114, pp. 15 –
27, 2019.

[37] H. Che and J. Wang, “A two-timescale duplex neurodynamic approach
to mixed-integer optimization,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 32, no. 1, pp. 36–48, 2021.

[38] J. Fan and J. Wang, “A collective neurodynamic optimization approach
to nonnegative matrix factorization,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 10, pp. 2344–2356, 10
2017.

[39] X. Li, J. Wang, and S. Kwong, “A discrete-time neurodynamic approach
to sparsity-constrained nonnegative matrix factorization,” Neural Com-
putation, vol. 32, no. 8, pp. 1531–1562, 2020.

[40] F. Glover, G. Kochenberger, and Y. Du, “Quantum bridge analytics i:
a tutorial on formulating and using qubo models,” 4OR, vol. 17, no. 4,
pp. 335–371, 2019.

[41] E. Goles-Chacc, F. Fogelman-Soulié, and D. Pellegrin, “Decreasing
energy functions as a tool for studying threshold networks,” Discrete
Applied Mathematics, vol. 12, no. 3, pp. 261–277, 1985.

[42] B. Cernuschi-Frı́as, “Partial simultaneous updating in Hopfield memo-
ries,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 19,
no. 4, pp. 887–888, 1989.

[43] D.-L. Lee, “New stability conditions for Hopfield networks in partial
simultaneous update mode,” IEEE Transactions on Neural Networks,
vol. 10, no. 4, pp. 975–978, 1999.

[44] J. Muñoz-Pérez, A. Ruiz-Sepúlveda, and R. Benı́tez-Rochel, “Paral-
lelism in binary hopfield networks,” in Advances in Computational
Intelligence, J. Cabestany, I. Rojas, and G. Joya, Eds. Springer Berlin
Heidelberg, 2011, pp. 105–112.

[45] M. Peng, N. K. Gupta, and A. F. Armitage, “An investigation into the
improvement of local minima of the hopfield network,” Neural networks,
vol. 9, no. 7, pp. 1241–1253, 1996.

[46] H. Che and J. Wang, “A two-timescale duplex neurodynamic approach
to biconvex optimization,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 8, pp. 2503–2514, 2019.

[47] M.-F. Leung and J. Wang, “A collaborative neurodynamic approach to
multiobjective optimization,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 11, pp. 5738 – 5748, 2018.

[48] G. A. Kochenberger, F. Glover, B. Alidaee, and C. Rego, “A unified
modeling and solution framework for combinatorial optimization prob-
lems,” OR Spectrum, vol. 26, no. 2, pp. 237–250, 2004.

[49] C. A. Floudas, P. M. Pardalos, C. Adjiman, W. R. Esposito, Z. H.
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