
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

A Collaborative Neurodynamic Algorithm for
Quadratic Unconstrained Binary Optimization

Hongzong Li and Jun Wang, Life Fellow, IEEE

Abstract—Quadratic unconstrained binary optimization
(QUBO) is a typical combinatorial optimization problem with
widespread applications in science, engineering, and business.
As QUBO problems are usually NP-hard, conventional QUBO
algorithms are very time-consuming for solving large-scale
QUBO problems. In this paper, we present a collaborative
neurodynamic optimization algorithm for QUBO. In the
proposed algorithm, multiple discrete Hopfield networks,
Boltzmann machines, or their variants are employed for
scattered searches, and a particle swarm optimization rule is
used to re-initialize neuronal states repeatedly toward global
optima. With extensive experimental results on four classic
combinatorial optimization problems, we demonstrate the
efficacy and potency of the algorithm against several prevailing
exact and meta-heuristic algorithms.

Index Terms—Quadratic unconstrained binary optimization,
combinatorial optimization, discrete Hopfield network,
collaborative neurodynamic optimization, Boltzmann machine.

I. INTRODUCTION

Quadratic unconstrained binary optimization (QUBO)
problems, also known as unconstrained binary quadratic
programs, are a major class of combinatorial optimization
problems, most of which are NP-hard [1]. QUBO problems
appear in a variety of application areas, such as quantum
computing [2], [1], graph-cut optimization [3], [4], [5],
video segmentation [6], visual recognition [7], data hashing
[8], human tracking [9], vehicle routing [10], network flow
optimization [11], material composition optimization [12],
magnet array optimization [13], model predictive control [14],
unit commitment [15], power network reconfiguration [16],
scientific computing [17].

Existing QUBO solution methods can be classified as exact
methods, approximate methods, heuristic and meta-heuristic
methods, and hardware-based methods. Specifically, exact
methods include branch and cut methods [18], branch and
bound methods [19], mixed-integer quadratic programming
solvers [20], etc. Approximation methods include max-flow
approaches [21], quadratic convex reformulation methods
[22], Lagrangian relaxation approaches [23], semidefinite
programming methods [24], physics-inspired graph neural
networks [25], mean-field approximation [26], stochastic

This work was supported in part by the Research Grants Council of
the Hong Kong Special Administrative Region of China under Grants
11202318, 11202019, and 11203721; and in part by the InnoHK initiative, the
Government of the Hong Kong Special Administrative Region, and Laboratory
for AI-Powered Financial Technologies.

H.-Z. Li and J. Wang are with the Department of Computer Science, City
University of Hong Kong, Hong Kong. J. Wang is also with the School of
Data Science, City University of Hong Kong, Hong Kong (emails: hongzli2-
c@my.cityu.edu.hk, jwang358@cityu.edu.hk).

neighborhood search algorithms [27], etc. In the view that
exact algorithms are time-consuming or ineffective for large-
scale optimization, they may be unable to obtain satisfactory
solutions in given short periods of time. In addition, because
of their approximation nature, the approximate methods
cannot guarantee solution optimality or even feasibility.
Heuristic and meta-heuristic methods include conditional
simulated annealing [28], tabu search methods [29], local
search heuristics [30], Markov chain search [31], evolutionary
algorithms [32], recurrent neural networks [33], [34],
quantum-inspired heuristic solver [35], deep reinforcement
learning [36], etc. Hardware-based methods are based mainly
on the D-Wave Quantum Annealer and Fujitsu’s Digital
Annealer; e.g., [5], [37], [14], [38], etc.

In his seminal papers, John Hopfield points out that
recurrent neural networks can collectively serve as powerful
computational models [39]. Specifically, the Hopfield networks
are developed for linear programming and combinatorial
optimization [40]. Since then, numerous neurodynamic
optimization models are developed [41] for linear and
nonlinear programming [42], [43], non-smooth optimization
[44], [45], generalized convex optimization [46], minimax
optimization [47], distributed optimization [48], [49], bi-level
optimization [50], combinatorial optimization [51], [33], [52],
and sparse optimization [53].

As an individual neurodynamic model is prone to be trapped
in local minima, a hybrid intelligence framework called
collaborative neurodynamic optimization (CNO) is developed
for solving global optimization problems [54]. In the CNO
approach, multiple neurodynamic models are leveraged for
scattered searches, and a metaheuristic rule is used for the
re-initialization of the neurodynamic models upon their local
convergence. It is proven to be almost surely convergent to
global optima of global optimization problems [54], [34]. In
addition, CNO approaches are extended for multi-objective
optimization [49], combinatorial optimization [34], and mixed-
integer optimization [55].

In this paper, we propose a QUBO algorithm in the
CNO framework (called CNO-QUBO). The CNO-QUBO
algorithm employs multiple discrete Hopfield networks, or
Boltzmann machines for scattered searches and re-initializes
the neuronal states using a particle swarm optimization rule.
We demonstrate the almost-sure global convergence of the
proposed algorithm and its superior performance against
several prevailing exact and meta-heuristic algorithms in
terms of accuracy and precision with respect to optimal
solutions. The salient features of the CNO-QUBO algorithm
are summarized as follows.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

i. CNO-QUBO is able to handle a variety of constrained
quadratic binary problems by reformulating them as
QUBO problems via the penalization of constraint
violation.

ii. CNO-QUBO leverages the stochastic optimization
capability of Boltzmann machines for scattered searches
and the gradient-free updating feature of a particle swarm
optimization rule to reposition the neuronal searches away
from local minima.

iii. CNO-QUBO is experimentally demonstrated to
outperform several prevailing exact and metaheuristic
algorithms in terms of solution quality and consistency.

The remaining parts of the paper are structured as
follows. In Section II, the preliminaries about neurodynamic
optimization are introduced. In Section III, the problem
formulation and reformulation are described. In Section IV, the
proposed CNO approach to QUBO is described. In Section V,
experimental results for solving four classic combinatorial
problems are elaborated. In Section VI, concluding remarks
are given.

II. PRELIMINARIES

In this section, we provide background knowledge about
neurodynamic optimization to facilitate the understanding of
the results.

A. Neurodynamic Optimization

1) Discrete Hopfield Network: The discrete Hopfield
network (DHN) exemplifies a recurrent neural network
characterized by its binary or bipolar states and hard-limiter
activation function [56]. Let W denote the neuron connection
weight matrix, and θ denote the neuron bias vector. DHN
operates in discrete time as follows:{

u(t) = Wx(t)− θ,

x(t+ 1) = σ(u(t)),
(1)

where u(t) is the net-input vector at the t-th iteration, x(t)
is the neuronal state vector at the t-th iteration, and σ(·) is a
vector-valued hard-limiter activation function to determine the
state of the (t + 1)-th iteration based on the net input. The
activation function is defined element-wise as:

σ(ui) =

{
0 if ui(t) ≤ 0,

1 if ui(t) > 0;

meaning that the state is reset to zero if the net input is
nonpositive or set to one otherwise.

As proved in [56], the global stability of DHN (1) is ensured
at an equilibrium state x̄ (i.e., limt→∞ x(t) = x̄) under the
following conditions: the symmetry of the weight matrix (i.e.,
W = WT ), the zero diagonal elements of the weight matrix
(i.e., wii = 0, ∀i), and asynchronous activation (i.e., only one
neuron is activated at a time, rather than all at the same time).

It is demonstrated in [56] that the DHN is globally
convergent to a local minimum of the following combinatorial
optimization problem:

min − 1

2
xTWx+ θTx,

s.t. x ∈ {0, 1}n. (2)

It is worth noting that the states of the DHN are determined
solely by the sign of the negative gradient of the objective
function in (2) without being influenced by any historical
effect.

If W in (2) is not symmetric, an equivalent approach is to
replace it with (W + WT )/2. In the view that the binary
variables have x2

i = xi, i = 1, 2, . . . , n, a linear term
diag(w11, . . . , wnn)x is added to realize the zero diagonal
elements of W .

Activating the DHN asynchronously entails a prolonged
time for its convergence. For W with some special properties,
synchronous activation in batches may expedite convergence.
Specifically, several methods are developed to activate
neuronal states synchronously in batches; e.g., [57], [58], [59],
[60]. For example, the DHN is still convergent to a local
minimum if the neurons without any direct connections are
activated synchronously in batches [60].

A DHN with a momentum term (DHNm) is introduced [61]
with the following neurodynamic equation:{

u(t) = u(t− 1) +Wx(t)− θ,

x(t+ 1) = σ(u(t)).
(3)

DHNm (3) takes historical effects into account and enriches
its dynamic behaviors by including the momentum term
u(t − 1). It has been demonstrated that the synchronously
activated neuronal states of DHNm (3) are convergent to a
local optimum of (2) [62], [63].

2) Boltzmann Machine: The Boltzmann machine (BM)
[64] is a stochastic version of DHN based on simulated
annealing [65] for minimizing (2). Different from the DHN,
the activation in the BM is carried out according to probability:

p(xi(t+ 1) = 1) =
1

1 + exp(−ui(t)
T )

,

p(xi(t+ 1) = 0) = 1− p(xi(t+ 1) = 1),

(4)

where T is the temperature parameter. T decrease gradually
over time following a cooling schedule [66] defined as follows:

T (t) = T0α
t, (5)

where T0 denotes the initial temperature parameter and α
denotes a cooling rate parameter in the range of (0, 1). It
is known that if T is sufficiently large, and the cooling
schedule is sufficiently long, BM is demonstrated almost
surely convergent to global optima [67], [68].

In analogy to DHNm (3), a BM with a momentum term
(BMm) [69] is expressed as:

u(t) = u(t) +Wx(t)− θ,

p(xi(t+ 1) = 1) =
1

1 + exp(−ui(t)
T )

,

p(xi(t+ 1) = 0) = 1− p(xi(t+ 1) = 1).

(6)



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

B. Collaborative Neurodynamic Optimization

A CNO approach consists of two levels: In the lower level,
multiple neurodynamic optimization models are employed for
scattered searches. Various recurrent neural may be used. In
the existing CNO paradigms, projection neural networks [70],
[71], [72] and discrete Hopfield networks (1) [73], [74], [75]
are often used. In the higher level, a gradient-free rule is used
for state initialization. Various rules in existing metaheuristic
algorithms may be used, e.g., the particle swarm optimization
algorithm [70], [71], [72], [73], [74], [69], shuffled frog
leaping algorithm [76], [77], the compressed coding scheme
[78], or others [79], [80]. The particle swarm optimization rule
is used in almost all of the CNO algorithms to reposition the
initial states of the neurodynamic models. Among various PSO
rules, the von Neumann topology stands out as an effective
and well-studied variant [81]. In this topology, particles
are organized in a grid-like structure, forming a lattice of
interconnected neighborhoods. Let p∗i denote the best position
found by the i-th particle individually, pi denote the position
vector of the i-th particle, l∗i denote the best neighbor of the
i-th particle on all four sides of the two-dimensional lattice,
and N denote the number of particles. The velocity vi and the
position pi, for i = 1, 2, . . . , N , are updated as follows:

vi(t+ 1) = c0vi(t) + c1r1(p
∗
i (t)− pi(t))+

c2r2(l
∗
i (t)− pi(t)),

if (r3 < S(vid(t))), then pid(t) = 1, else pid(t) = 0,
(7)

where c0 is an inertia parameter, c1, c2 are two acceleration
constants, r1, r2, r3 ∈ [0, 1] are three random numbers, and
S(·) is a sigmoid limiting transformation.

The diversity of global search is non-negligible in global
and combinatorial optimization in the presence of convexity
in objective functions or solution spaces. A simple diversity
measure is defined as:

δ(x) =
1

Nn

N∑
i=1

∥pi − p∗∥2, (8)

where n is the dimension of solutions, and p∗ is the best
solution among the N solutions.

In the literature, many mutation operators are used to ensure
solution diversity. In particular, the following bit-flip mutation
operation is defined in [82]: if δ(x) < ϵ, then

xj =

{
¬xj if ξj ≤ Pmut,

xj otherwise ,
(9)

where ϵ is a threshold, x̄j is the negation of xj , ξj is a
randomly generated number in the range of [0, 1], and Pmut

is a mutation probability.
CNO works as a computationally intelligent optimizer in

a variety of applications, including vehicle-task assignment
[71], hash bit selection [74], model predictive control [83],
Boolean matrix factorization [84], binary matrix factorization
[75], portfolio selection [85], sparse signal reconstruction [86],
etc.

III. PROBLEM FORMULATION

Numerous combinatorial optimization problems may be
reformulated in a QUBO form. Consider a constrained
quadratic binary optimization problem with a quadratic
pseudo-Boolean objective function and linear constraints in
the following form:

min xTQx+ qTx, (10a)
s.t. Ax = b, (10b)

Cx ≤ d, (10c)
x ∈ {0, 1}n. (10d)

where Q ∈n×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n,
and d ∈ Rp.

The reformulation starts with defining a nonnegative penalty
function to satisfy the constraints, such that the penalty
function value is equal to zero for feasible solutions or it
is positive for infeasible solutions. Problem (10) may be
reformulated in a QUBO form by superposing a quadratic
penalty function into the objective function. If the penalty
function value decreases to zero, the augmented objective
function degenerates to the original objective function.

To handle equality constraints (10b), a quadratic penalty
term is defined below:

pc(x) =
1

2

m∑
i=1

( n∑
j=1

aijxj − bi
)2

=
1

2
∥Ax− b∥22. (11)

There are two common ways to convert inequality
constraints in (10c) to corresponding penalty terms: Some
common inequality constraints (e.g., x ≤ y) can be
directly formulated to corresponding penalty terms by using
some existing transformation techniques without adding slack
variables [87]. For example, the constraint x ≤ y can be
converted to the penalty term P (x−xy) [1]. General inequality
constraints can be converted to equalities by adding binary
slack variables weighted by a series of integral powers of 2.
As the left-hand side of each inequality constraint in (10c)
is always an integer, by introducing a binary slack variable
yik ∈ {0, 1} for constraint i with k = 0, ..., ⌊log2(di)⌋ to be
expanded as an integer to fill the gap. In addition to the above
ways, a penalty term for the inequality constraint in (10c) is
defined by using a rectified activation function [69]:

pb(x) =
1

2

p∑
l=1

(
max{0,

n∑
i=1

clixi − dl}
)2

. (12)

A penalty function p(x) and a penalized objective function
fρ(x) are defined by including the two quadratic penalty terms
in (11) and (12), and a positive penalty parameter ρ:

p(x) = pb(x) + pc(x), (13)
fρ(x) = f(x) + ρp(x). (14)

With (14), the original problem in (10) is reformulated as a
QUBO problem:

min
x

fρ(x), (15)

s.t. x ∈ {0, 1}n.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

It is well known that the optimal solution to (10) is the
same as that to (15), provided that the penalty parameter ρ
is sufficiently large [87]. It is worth pointing out that the
QUBO problem is quite similar to the Ising model that is an
archetypical Markov random field. The only difference lies in
their different discrete variables (i.e., {0, 1}n vs. {−1, 1}n),
and straightforward linear translations can convert between
them [88]. A Python library is available for formulating QUBO
and Ising models [89].

In view of the different parametric ranges of different
QUBO problems, to avoid numerical imbalance in
optimization, it is better to normalize the parameter
matrices and vectors in a given QUBO problem. In this
paper, we normalize the problem parameters as follows. Let
Qmax denote the maximal absolute value of the elements
in Q and 2qT , Âmax denotes the maximal absolute value
of the elements in ATA and 2AT b, and Ĉmax denotes the
maximal absolute value of the elements in CTC and 2CT d.
Q̄ = (Q + QT )/Qmax, q̄ = q/Qmax, Ā = ATA/Âmax, b̄ =
AT b/Âmax, C̄ = CTC/Ĉmax, and d̄ = CT d/Ĉmax. As a
result of the parameter normalization, the penalty parameter
ρ may be set in the order of 10’s.

IV. CNO-QUBO ALGORITHMS

A. Algorithm Description

In this section, we describe the CNO algorithm termed
CNO-QUBO for solving the normalized QUBO in (15). Fig. 1
shows a schematic diagram of the CNO-QUBO algorithm. As
shown in Fig. 1, CNO-QUBO is structured in two levels: a
lower level and an upper level. In the lower level, a population
of DHNs (1), DHNm’s (3), BMs (4), or BMm’s (6) with
different initial states are leveraged to carry out scattered
searches for optimal solutions. In the upper level, PSO rule (7)
is used for state reinitialization upon their local convergence
to reposition the scattered searches away from local optima at
more promising points.

Initial 
states

Optimal
solution

Multiple neurodynamic models

A particle swarm optimization rule with 
von‐Neumann topology

… …

Fig. 1. A schematic diagram of the CNO-QUBO algorithm.

Let CNO-QUBO/DHN, CNO-QUBO/DHNm, CNO-
QUBO/BM, and CNO-QUBO/BMm denote CNO-QUBO

with DHN, DHNm, BM, and BMm, respectively. Algorithm
1 details the CNO-QUBO/BMm algorithm. Specifically, steps
1 - 29 span the outer loop for global search, steps 2 - 14 are
the inner loop to perform scatter search by using the BMm’s,
steps 16 - 19 are to identify the best BMm in the population,
steps 22 - 24 are to update the states of BMm’s using the
PSO rule in (7), and steps 26 - 28 are to perform mutation
operation.

Algorithm 1: CNO-QUBO/BMm

Input: N , M , Initial states [x(1)(0), ..., x(N)(0)],
initial incremental vector [v(1)(0), ..., v(N)(0)],
individual/group best solutions x(i)/ x∗,
f̄ρ(x

(i)) = f̄ρ(x
∗) =∞, initial temperature T0,

mutation threshold ϵ, PSO parameters c0, c1
and c2.

Output: x∗.
1 while m ≤M do
2 for i = 1 to N do
3 T ← T0;
4 t← 0;
5 u(i)(0)← 2x(i)(0)− 1;
6 while τ ≤ p(x(i)(t+ 1) = 1) ≤

1− τ ∧ sign(u(i)(t)) ̸= sign(Wx(i)(t)− θ) do
7 T ← T0α

t;
8 Update x(i)(t+ 1) according to (6) with

u(i)(t+ 1) and T ;
9 t← t+ 1;

10 end
11 if fρ(x̄(i)) < fρ(x

(i)) then
12 x(i) ← x̄(i);
13 end
14 end
15 x̂ = argminx̂{fρ(x(1)), ..., fρ(x

(i)), ..., fρ(x
(N)};

16 if fρ(x̂) < fρ(x
∗) then

17 x∗ ← x̂;
18 m← 0;
19 else
20 m← m+ 1;
21 end
22 for i = 1 to N do
23 Update velocity and initial neuronal state

according to (7);
24 end
25 Compute δ(q) according to (8);
26 if δ(q) < ϵ then
27 Perform the bit-flip mutation according to (9);
28 end
29 end
30 return x∗.

Besides the BMm, the DHN in (1), the DHNm in (3), and
the BM in (4) may also be used in the CNO-QUBO algorithm.
Algorithm 2 provides the pseudocodes for clustering indirectly
connected neurons for partially synchronous activation in
batches based on the idea in [60]. Algorithm 3 details a
procedure of the batch-mode neuronal activation for the DHN



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

Algorithm 2: Clustering DHN or BM neurons into
batches

Input: The DHN or BM connection weight matrix W ,
the number of neurons n.

Output: Batches of neurons B.
1 for i = 1 : n do
2 if i = 1 then
3 Add i to batch 1;
4 The number of batches ← 1
5 else
6 for ℓ = 1 : the number of batches do
7 FeasibleFlag ← 1;
8 for the element j in batch ℓ do
9 if weight wij ̸= 0 then

10 FeasibleFlag ← 0;
11 end
12 end
13 if FeasibleFlag= 1 then
14 Add i to batch ℓ;
15 AddFlag ← 1;
16 break
17 end
18 end
19 end
20 if AddFlag = 0 then
21 Add i to a new batch;
22 The number of batches ← The number of

batches + 1;
23 else
24 AddFlag ← 0;
25 end
26 end
27 return B.

and BM, where the batch index is randomly shuffled at Step 3
in every iteration to enhance the DHN or BM search diversity,
as in [74]. The CNO-QUBO algorithm with a population of
the DHNs and BMs (termed as CNO-QUBO/DHN and CNO-
QUBO/BM, respectively) can be implemented by replacing
Steps 3 - 8 in CNO-QUBO/BMm with Algorithms 2 and
3. The DHNm’s (termed as CNO-QUBO/DHNm) can be
implemented by deleting steps 3 and 7 and replacing BMm in
(6) in step 8 in CNO-QUBO/BMm with DHNm in (3).

In addition, the CNO-QUBO algorithm may be easily
extended for the Ising model by using the DHN and DHNm
with the bipolar hard-limiter activation function [56].

B. Inner-loop Termination Criteria

In the inner loop of the CNO-QUBO/DHN and CNO-
QUBO/BM algorithms (i.e., the execution of DHN and BM),
a termination criterion is to check whether the neuronal states
between two consecutive iterations become unchanged, as
implemented in Algorithm 3.

In the inner loop of the CNO-QUBO/DHNm and CNO-
QUBO/BMm algorithms (i.e., the execution of DHNm and
BMm), the following termination criteria are proposed to

Algorithm 3: DHN/BM activation in batches
Input: W , θ, batch index B.
Output: Equilibrium x̄ of DHN or BM.

1 while StableFlag = 1 do
2 StableFlag← 0
3 Shuffle the batch index
4 for i = 1 : the number of batches do
5 for the elements j in batch i do
6 for DHN do
7 uj ←

∑n
k=1 wjkxk − θj ;

8 if xj ̸= σ(uj) then
9 xj ← σ(uj);

10 StableFlag← 1;
11 end
12 end
13 for BM do
14 pj ← 1

1+exp(−∆Ei
T )

;

15 Generate a random number γ
16 if γ < pj then
17 if xj = 0 then
18 StableFlag← 1
19 end
20 xj ← 1;
21 else if γ > pj then
22 if xj = 1 then
23 StableFlag← 1
24 end
25 xj ← 0;
26 end
27 end
28 end
29 end
30 end
31 return x̄.

check the convergence of DHNm’s and the stochastic
convergence of BMm’s as follows: Let sign(·) ∈ {−1, 1} be a
sign operator. If sign(u(t)) = sign(Wx(t)− θ), then the sum
of u(t) and Wx(t)− θ have the same sign as u(t); i.e.,

sign(u(t)) = sign(u(t) +Wx(t)− θ).

In view of σ(u) = (sign(u) + 1)/2,

sign(u(t)) + 1

2
=

sign(u(t) +Wx(t)− θ) + 1

2
,

σ(u(t)) = σ(u(t) +Wx(t)− θ). (16)

In DHNm’s, as in (3),

x(t+ 1) = σ(u(t+ 1)) = σ(u(t) +Wx(t)− θ). (17)

Substituting (16) into (17), we have x(t+ 1) = σ(u(t)) =
x(t). Therefore, if sign(u(t)) = sign(Wx(t)− θ), then
DHNm converges.

In BMm’s, for a given small constant τ , if p(x(t + 1) =
1) < τ or p(x(t+ 1) = 1) > 1− τ, then as in (6),

x(t+ 1) ≈ σ(u(t+ 1)) = σ(u(t) +Wx(t)− θ). (18)



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

Substituting (16) into (18), we have x(t+ 1) ≈ σ(u(t)) =
x(t). Therefore, if (p(x(t + 1) = 1) < τ ∨ p(x(t + 1) =
1) > 1 − τ) and sign(u(t)) = sign(Wx(t)− θ), then the
convergence takes place with probability 1− τ .

C. Hyper-Parameter Selection

In CNO-QUBO, there are two hyper-parameters: N (the
DHN, DHNm, BM, or BMm population size) and M
(the CNO-QUBO termination criterion in the outer loop).
Determining these two hyper-parameters is usually carried out
in an ad hoc manner, as their values depend on the complexity
of the problem. Generally, the sufficiently large values of N
and M result in fast and almost-sure convergence of CNO-
QUBO to global optima.

V. BENCHMARK EXPERIMENTS

In this section, we elaborate on the results of experiments
on four test instances of four classic set-theoretic and
combinatorial optimization problems to substantiate the
efficacy and superiority of the CNO-QUBO algorithm.

In the PSO rule (7), c0 = 1 and c1 = c2 = 2. In
the BMm, τ = 0.001. For performance comparison, the
experimental results of the PSO algorithm with the same
parameters above and other baseline algorithms are tabulated
in the next subsection. The experimental environment is
Windows 10 (64-bit), Intel(R) Core(TM) i7-9700K CPU @
3.60GHz and 64.0GB RAM.

A. Set Partitioning Problem

The set partitioning problem (SPP) is to partition a set
of items into a number of subsets so that the total cost of
the partition is minimized. It is an NP-hard problem with
probably the most widespread applications [90]. SPP is usually
formulated as the following 0-1 linear program:

min
x

n∑
j=1

cjxj ,

s.t.
n∑

j=1

aijxj = 1, i = 1, ...,m,

xj ∈ {0, 1}, j = 1, ..., n,

where m is the number of items, n is the number of possible
subsets, xj indicates whether or not subset j is chosen, cj
is the cost coefficient associated with subset j, and aij is a
binary indicator with its value being one if subset j contains
item i or zero otherwise.

Consider an SPP instance with m = 30, n = 100, and
cost coefficients cjs and binary indicators aijs are randomly
generated in [0, 600] and {0, 1}, respectively. To ensure the
existence of feasible solutions, the sparsity of aijs is kept at
90%.

Fig. 2(a) depicts two snapshots of f(x) in (10a) and
p(x) in (13) using an individual BMm in the inner loop of
CNO-QUBO/BMm (Steps 6-10). It shows that the objective
function reaches equilibrium within 25 iterations, and the
penalty function value decreases to zero, demonstrating BMm

0 10 20 30

Inner-loop iteration

0

5000

10000

f(
x)

0 10 20 30

Inner-loop iteration

0

20

60

100

p
(x

)

(a) SPP

0 100 200 300 400 500

Inner-loop iteration

-2.5

-1.5

-0.5

f(
x)

#104

0 100 200 300 400 500

Inner-loop iteration

0

20

60

p
(x

)

(b) MDP

0 20 40 60 80 100

Inner-loop iteration

-10

-6

-2
f(

x)

#104

0 20 40 60 80 100

Inner-loop iteration

0

1500

3000

p
(x

)

(c) QKP

0 20 40 60 80 100

Inner-loop iteration

1

3

5

f(
x)

#104

0 20 40 60 80 100

Inner-loop iteration

0

150

300

p
(x

)

(d) QAP

Fig. 2. Snapshots of objective function value of (10a) and penalty function
value of (13) in CNO-QUBO/BMm.

converges to a feasible solution. Fig. 3(a) illustrates the
convergent behavior of CNO-QUBO/BMm with M = 8 and
N = 2. Figs. 4(a)-4(b) illustrate the boxplots of Monte Carlo
results on f(x) obtained by using CNO-QUBO/DHNm and
CNO-QUBO/BMm with various values of M and N for
solving the SPP. The top of the box denotes the upper quartile
qn(0.75), which is the median of the upper half of the result.
The bottom of the box denotes the lower quartile qn(0.25),
which is the median of the lower half of the result. The
whiskers denote the highest result value and lowest result
value. Fig. 4(a) and Fig. 4(b) show that the objective function
values always reach their minima in all 100 runs if M ≥ 6
and N ≥ 8 by using CNO/DHNm, and M ≥ 8 and N ≥ 2



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

1 2 3 4 5 6 7 8 9 10

Outer-loop iteration

2000

4000

6000

8000

10000
f(

x)

(a) SPP

0 100 200 300 400 500 600 700 800 900 1000

Outer-loop iteration

-1250

-1200

-1150

-1100

-1050

f(
x)

(b) MDP

0 100 200 300 400 500 600 700

Outer-loop iteration

-2.8

-2.6

-2.4

-2.2

-2

f(
x)

#104

(c) QKP

0 50 100 150 200 250 300 350 400 450

Outer-loop iteration

5400

5600

5800

6000

f(
x)

(d) QAP

Fig. 3. The convergent behavior of CNO-QUBO/BMm.

by using CNO/BMm.

B. Maximum Diversity Problem

The maximum diversity problem is to select a subset of m
elements from n elements that yield the sum of the distances
between the chosen elements maximized. MDP is formulated
as follows [91]:

max
x

n−1∑
i=1

n∑
j=i+1

dijxixj ,

s.t.
n∑

i=1

xi = m,

xi ∈ {0, 1}, i = 1, ..., n,

where dij is the distance between i and j, and xi = 1
if element i is selected: else, xi = 0. For dataset SOM-
b 5 n200 m20 [91], the optimal objective function value is
1247.

Fig. 2(b) depicts two snapshots of f(x) in (10a) and
p(x) in (13) using an individual BMm in the inner loop of

CNO-QUBO/BMm (Steps 6-10). It shows that the objective
function reaches equilibrium within 300 iterations, and the
penalty function value decreases to zero, demonstrating BMm
converges to a feasible solution. Fig. 3(b) illustrates the
convergent behavior of CNO-QUBO/BMm with M = 500
and N = 1000. Figs. 4(c)-4(d) illustrate the boxplots of Monte
Carlo results on f(x) obtained by using CNO-QUBO/DHNm
and CNO-QUBO/BMm with various values of M and N
for solving the MDP. Fig. 4(c) and Fig. 4(d) show that the
objective function values always reach their minima in all 100
runs if M ≥ 500 and N ≥ 1500 by using CNO/DHNm, and
M ≥ 500 and N ≥ 1000 by using CNO/BMm.

C. Quadratic Knapsack Problem

The quadratic knapsack problem (QKP) is to find a subset
of items that yields the maximum total value of the items
without exceeding given resource capacities.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

N
=

1
M

=
2 4 6 8 10

M
=

2 4 6 8 10
M

=
2 4 6 8 10

M
=

2 4 6 8 10
M

=
2 4 6 8 10

N = 2 N = 4 N = 6 N = 8 N = 10

1000

2000

3000

4000

5000

6000

7000

8000

f(
x)

(a) CNO-QUBO/DHNm for solving SPP

N
=

1
M

=
2 4 6 8 10

M
=

2 4 6 8 10
M

=
2 4 6 8 10

M
=

2 4 6 8 10
M

=
2 4 6 8 10

N = 2 N = 4 N = 6 N = 8 N = 10

1000

2000

3000

4000

5000

6000

7000

8000

f(
x)

(b) CNO-QUBO/BMm for solving SPP

N
=

1
M

=
10
0

20
0

30
0

40
0

50
0

M
=

10
0

20
0

30
0

40
0

50
0

M
=

10
0

20
0

30
0

40
0

50
0

M
=

10
0

20
0

30
0

40
0

50
0

M
=

10
0

20
0

30
0

40
0

50
0

N = 10 N = 100 N = 500 N = 1000 N = 1500

1000

1050

1100

1150

1200

1250

f(
x)

1242

1246

(c) CNO-QUBO/DHNm for solving MDP

N
=

1
M

=
10
0

20
0

30
0

40
0

50
0

M
=

10
0

20
0

30
0

40
0

50
0

M
=

10
0

20
0

30
0

40
0

50
0

M
=

10
0

20
0

30
0

40
0

50
0

M
=

10
0

20
0

30
0

40
0

50
0

N = 10 N = 100 N = 200 N = 500 N = 1000

1000

1050

1100

1150

1200

1250

f(
x)

1238

1242

1246

(d) CNO-QUBO/BMm for solving MDP

N
=

1

M
=

50 10
0

20
0

30
0

40
0

M
=

50 10
0

20
0

30
0

40
0

M
=

50 10
0

20
0

30
0

40
0

M
=

50 10
0

20
0

30
0

40
0

M
=

50 10
0

20
0

30
0

40
0

N = 10 N = 100 N = 500 N = 800 N = 1000

1.5

2

2.5

3

f(
x)

#104

2.905

2.91

2.915
#104

(e) CNO-QUBO/DHNm for solving QKP

N
=

1

M
=

50 10
0

20
0

30
0

40
0

M
=

50 10
0

20
0

30
0

40
0

M
=

50 10
0

20
0

30
0

40
0

M
=

50 10
0

20
0

30
0

40
0

M
=

50 10
0

20
0

30
0

40
0

N = 10 N = 100 N = 400 N = 600 N = 800

1.5

2

2.5

3

f(
x)

#104

2.9

2.91

#104

(f) CNO-QUBO/BMm for solving QKP

N
=

1
M

=
10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

N = 10 N = 100 N = 200 N = 300 N = 400

5400

5500

5600

5700

5800

5900

6000

6100

f(
x)

5360

5380

5400

(g) CNO-QUBO/DHNm for solving QAP

N
=

1
M

=
10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

M
=

10 50 10
0

20
0

30
0

N = 10 N = 50 N = 100 N = 200 N = 300

5400

5500

5600

5700

5800

5900

6000

6100

f(
x)

5360

5365

(h) CNO-QUBO/BMm for solving QAP

Fig. 4. Monte Carlo results obtained by using the CNO-QUBO/DHNm and CNO-QUBO/BMm.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

QKP is formulated as follows [92]:

max
x

n∑
i=1

n∑
j=1

dijxixj +

n∑
i=1

qixi,

s.t.
n∑

j=1

wjxj ≤ c,

xj ∈ {0, 1}, j = 1, ..., n,

where n is the number of items, dij is the gain achieved if
both item i and j are selected, qi is the gain achieved if item
i is selected, wj is the resource requirement of item j, c is
knapsack capacity and xj = 1 if item j is chosen: else, xj = 0.
In particular, for a QKP instance, r 300 25 1, with n = 300
[92], the optimal objective function value is 291401.

Fig. 2(c) depicts two snapshots of f(x) in (10a) and
p(x) in (13) using an individual BMm in the inner loop of
CNO-QUBO/BMm (Steps 6-10). It shows that the objective
function reaches equilibrium within 50 iterations, and the
penalty function value decreases to zero, demonstrating BMm
converges to a feasible solution. Fig. 3(c) illustrates the
convergent behavior of CNO-QUBO/BMm with M = 300
and N = 800. Figs. 4(e)-4(f) illustrate the boxplots of Monte
Carlo results on f(x) obtained by using CNO-QUBO/DHNm
and CNO-QUBO/BMm with various values of M and N
for solving the QKP. Fig. 4(e) and Fig. 4(f) show that the
objective function values always reach their minima in all
runs if M ≥ 300 and N ≥ 1000 by using CNO/DHNm,
and M ≥ 300 and N ≥ 800 by using CNO/BMm.

D. Quadratic Assignment Problem

The quadratic assignment problem (QAP) is a prototypical
combinatorial optimization problem including many problems
as its special cases, such as the traveling salesman problem
and graph matching [93], [94]. It seeks to find the optimal
assignments of pairs such that the total cost associated with
the assignments is minimized [95]:

min

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

fikdjlxijxkl,

s.t.
n∑

i=1

xij = 1, j = 1, ..., n,

n∑
j=1

xij = 1, i = 1, ..., n,

xij ∈ {0, 1}, i, j = 1, ..., n,

where fik is the flow of material or information between
facilities i and k, djl is the distance between facilities j and
l in the context of logistics.

In this paper, the experiment is conducted on dataset had18
[95]. The optimal objective function value is 53582.

Fig. 2(d) depicts two snapshots of f(x) in (10a) and
p(x) in (13) using an individual BMm in the inner loop of
CNO-QUBO/BMm (Steps 6-10). It shows that the objective

1http://cedric.cnam.fr/∼soutif/QKP/N300D25.txt
2https://www.opt.math.tugraz.at/qaplib/inst.html

function reaches equilibrium within 100 iterations, and the
penalty function value decreases to zero, demonstrating BMm
converges to a feasible solution. Fig. 3(d) illustrates the
convergent behavior of CNO-QUBO/BMm with M = 300
and N = 300. Figs. 4(g)-4(h) illustrate the boxplots of Monte
Carlo results on f(x) obtained by using CNO-QUBO/DHNm
and CNO-QUBO/BMm with various values of M and N
for solving the QAP. Fig. 4(g) and Fig. 4(h) show that the
objective function values always reach their minima in all
runs if M ≥ 200 and N ≥ 400 by using CNO/DHNm, and
M ≥ 300 and N ≥ 300 by using CNO/BMm.

E. Performance Comparisons

In this subsection, for comparison, we summarize the
experimental results of the CNO-QUBO algorithm with the
DHNs, DHNm’s, BMs, and BMm’s for solving the four classic
problems presented in the preceding subsections, along with
several state-of-the-art exact and meta-heuristic algorithms
such as MINLP, CPLEX, greedy randomized adaptive search
procedure (GRASP) [98], tabu search (TS) [29], simulated
annealing (SA) [28], genetic algorithm (GA) [97], PSO
algorithm [102], iterative greedy algorithm (IG) [99], ant
colony optimization [105] and grey wolf optimizer (GWO)
[106]. The sixth and seventh column boxes in Table I record
the averaged results over 100 runs in terms of the best, worst,
mean, and standard deviation of objective function values, the
total number of iterations in the population, and CPU time in
seconds on a PC in the MATLAB environment. In the CNO-
QUBO/DHN algorithm and CNO-QUBO/BM algorithm, the
numbers of batches for partially synchronous activations in
the four problem instances are 19, 200, 300, and 324.

As shown in Table I, CNO-QUBO/DHNm and
CNO-QUBO/BMm outperform CNO-QUBO/DHN,
CNOQUBO/BM, and other baseline algorithms in terms of
time efficiency as well as solution quality and consistency. In
particular, only CNO-QUBO/DHNm and CNO-QUBO/BMm
can reach global optima with zero standard deviation across all
four benchmark problems, indicating the highest quality and
consistency. In addition, it is shown that CNO-QUBO/DHNm
is faster than most of the baselines in terms of the average
number of iterations and the average CPU time. Note that
the average numbers of iterations of CNO-QUBO/DHNm are
much smaller than those of CNO-QUBO/DHN, owing to the
fully synchronous activation in CNO-QUBO/DHNm instead
of partially synchronous activation in CNO-QUBO/DHN.

VI. CONCLUDING REMARKS

In this paper, the collaborative neurodynamic algorithm
is proposed for solving QUBO problems. The almost-sure
convergence to global optima property inherited in the CNO
approach is demonstrated experimentally. Experimental results
of four well-known benchmark problems are elaborated to
substantiate the efficacy and superiority of CNO-QUBO
against several prevailing exact and meta-heuristic algorithms.
The superior performance of CNO-QUBO is owing to the
use of multiple Boltzmann machines with momentums for
scattered searches assisted by the particle swarm optimization



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

TABLE I
AVERAGE RESULTS OF THE CNO-QUBO ALGORITHM AND SEVERAL BASELINES IN TERMS OF THE BEST/WORST OBJECTIVE FUNCTION VALUES, MEAN

VALUES, STANDARD DEVIATIONS, THE NUMBER OF ITERATIONS, AND CPU TIME (SECONDS) AT EACH RUN FOR THE FOUR PROBLEM INSTANCES, WHERE
GUROBI STANDS FOR GUROBI OPTIMIZER, CPLEX-DS FOR CPLEX DYNAMIC SEARCH, TS FOR THE TABU SEARCH ALGORITHM, GA FOR THE GENETIC
ALGORITHM, CNTS FOR THE CONSTRAINED NEIGHBORHOOD TABU SEARCH ALGORITHM, MA FOR THE HYBRID METAHEURISTIC ALGORITHM, GRASP
FOR THE GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE ALGORITHM, IG FOR THE ITERATED GREEDY ALGORITHM, ACO FOR THE ANT COLONY
OPTIMIZATION ALGORITHM, HAS FOR THE HARMONY SEARCH ALGORITHM, SA FOR THE SIMULATED ANNEALING ALGORITHM, GWO FOR THE GREY

WOLF OPTIMIZATION ALGORITHM, CNO/DHN FOR CNO-QUBO/DHN, CNO/DHNM FOR CNO-QUBO/DHNM, THE BEST RESULTS ARE BOLDFACED,
/ INDICATES “NOT APPLICABLE”, — INDICATES “NOT AVAILABLE”, †INDICATES THE PRESCRIBED MAXIMUM NUMBER OF ITERATIONS.

problem dimension # of solutions optimal value ρ algorithm N M best/worst mean ± std # of iterations CPU time

SPP 100 1.27× 1030 1573 5

Gurobi / / 1573/1573 1573.00 ± 0.00 — 3.66
CPLEX/DS / / 1573/1573 1573.00 ± 0.00 — 9.94

TS [29] / / 3528/8053 5427.37 ± 961.85 10000.00† 10.66
GA SPP [96] 8 / 1573/3935 2078.78 ± 661.69 5498.96 4.72

CNO/DHN 8 6 1573/4922 3159.16 ± 815.81 843.62 0.04
CNO/BM 8 6 1573/4130 2782.68 ± 800.48 2327.12 0.07

CNO/DHNm 8 6 1573/1573 1573.00 ± 0.00 1138.48 0.02
CNO/BMm 8 6 1573/1573 1573.00 ± 0.00 586.86 0.02

MDP 200 1.61× 1060 1247 40

Gurobi / / — — — —
TS [29] / / 1241/1179 1214.16 ± 15.35 2000000.00† 1490.98

CNTS MDP [91] / / 1161/1034 1102.24 ± 32.88 7000000.00† 297.62
GA MDP [97] 1500 / 1082/1040 1062.88 ± 8.99 1500000.00† 1965.04
MA MDP [91] 1500 500 1225/1183 1202.33 ± 10.67 225000000.00† 4107.12

CNO/DHN 1500 500 1247/1231 1242.44 ± 4.98 149944.00 1582.42
CNO/BM 1500 500 1247/1236 1242.48 ± 3.66 258112.00 5518.63

CNO/DHNm 1500 500 1247/1247 1247.00 ± 0.00 86682.96 253.05
CNO/BMm 1500 500 1247/1247 1247.00 ± 0.00 51616.41 273.45

QKP 300 2.04× 1090 29140 100

TS [29] / / 28608/25654 27346.84 ± 776.25 150000.00† 278.37
GRASP QKP [98] / / 15273/12879 13536.84 ± 473.34 1000000.00† 237.48

SA QKPa / / 27615/21553 24170.08 ± 1746.38 300000.00† 297.32
IG QKP [99] / / 13019/11004 11941.88 ± 499.52 1500000.00† 343.36

GA QKP [100] 1000 / 29140/28757 29020.83 ± 96.98 717728.25 255.96
ACO QKP [101] 1000 / 2392/1959 2105.24 ± 87.98 500000000.00† 246.28

PSO [102] 1000 300 28919/26404 27902.63 ± 534.35 792.17 0.47
CNO/DHN 1000 300 29140/29083 29137.72 ± 11.40 86628.00 110.39
CNO/BM 1000 300 29140/29075 29128.26 ± 22.46 148716.00 190.52

CNO/DHNm 1000 300 29140/29140 29140.00 ± 0.00 28334.32 172.43
CNO/BMm 1000 300 29140/29140 29140.00 ± 0.00 31423.21 230.43

QAP 324 3.42× 1097 5358 80

TS [29] / / 5690/6074 5893.62 ± 120.85 300000.00† 603.21
TS QAP [103] / / 5358/5400 5371.83 ± 11.15 1179873.92 328.49
SA QAP [104] / / 5358/5442 5387.54 ± 25.58 34948858.15 294.23

GA QAPb 400 / 5358/5400 5375.07 ± 14.52 2081482.67 212.43
GWO QAPb 400 / 5536/5694 5624.45 ± 44.62 16000000.00† 231.72

PSO [102] 400 200 5604/5758 5678.84 ± 36.86 80400.00 0.37
PSO QAPc 400 / 5388/5546 5464.88 ± 39.56 12000000.00† 260.34
CNO/DHN 400 200 5358/5358 5358.00 ± 0.00 155312.64 171.48
CNO/BM 400 200 5358/5358 5358.00 ± 0.00 166160.16 192.69

CNO/DHNm 400 200 5358/5358 5358.00 ± 0.00 24124.82 21.95
CNO/BMm 400 200 5358/5358 5358.00 ± 0.00 20180.92 34.58

a https://github.com/DaCasBe/Multiple-Quadratic-Knapsack-Problem-using-Population-based-Metaheuristics,
b https://github.com/zohrehraziei/QAP-Meta-heuristic-Algorithms,
c https://yarpiz.com/359/ypap104-quadratic-assignment-problem

rule for global repositioning. Further investigations may aim
at implementing the CNO-QUBO algorithm in a parallel
computing platform (e.g., CUDA), enhancing the robustness of
the CNO-QUBO algorithm to handle noisy data, customizing
the CNO-QUBO algorithm in specific application domains
(such as constrained clustering, vehicle routing, and crowd
tracking), and developing more efficient and versatile CNO-
based QUBO algorithms assisted via deep learning or
reinforcement learning.

REFERENCES

[1] F. Glover, G. Kochenberger, R. Hennig, and Y. Du, “Quantum bridge
analytics I: a tutorial on formulating and using QUBO models,” Annals
of Operations Research, vol. 314, no. 1, pp. 141–183, 2022.

[2] F. Glover, G. Kochenberger, M. Ma, and Y. Du, “Quantum bridge
analytics II: QUBO-Plus, network optimization and combinatorial
chaining for asset exchange,” Annals of Operations Research, vol. 314,
no. 1, pp. 185–212, 2022.

[3] V. Kolmogorov and C. Rother, “Minimizing nonsubmodular functions
with graph cuts - a review,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 7, pp. 1274–1279, 2007.

[4] I. Dunning, S. Gupta, and J. Silberholz, “What works best when? a
systematic evaluation of heuristics for max-cut and QUBO,” INFORMS
Journal on Computing, vol. 30, no. 3, pp. 608–624, 2018.

[5] W. Cruz-Santos, S. E. Venegas-Andraca, and M. Lanzagorta, “A QUBO
formulation of minimum multicut problem instances in trees for D-
Wave quantum annealers,” Scientific Reports, vol. 9, no. 1, pp. 1–12,
2019.

[6] C. Wang, Y. Guo, J. Zhu, L. Wang, and W. Wang, “Video
object co-segmentation via subspace clustering and quadratic pseudo-
Boolean optimization in an MRF framework,” IEEE Transactions on
Multimedia, vol. 16, no. 4, pp. 903–916, 2014.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

[7] J. Ren, X. Jiang, J. Yuan, and G. Wang, “Optimizing LBP structure for
visual recognition using binary quadratic programming,” IEEE Signal
Processing Letters, vol. 21, no. 11, pp. 1346–1350, 2014.

[8] X. Liu, J. He, and S. Chang, “Hash bit selection for nearest neighbor
search,” IEEE Transactions on Image Processing, vol. 26, no. 11, pp.
5367–5380, Nov 2017.

[9] A. Dehghan and M. Shah, “Binary quadratic programing for online
tracking of hundreds of people in extremely crowded scenes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 3, pp. 568–581, 2018.

[10] S. Harwood, C. Gambella, D. Trenev, A. Simonetto, D. E. B. Neira, and
D. Greenberg, “Formulating and solving routing problems on quantum
computers,” IEEE Transactions on Quantum Engineering, vol. 2, pp.
1–17, 2021.

[11] T. Krauss, J. McCollum, C. Pendery, S. Litwin, and A. J. Michaels,
“Solving the max-flow problem on a quantum annealing computer,”
IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–10, 2020.

[12] Y. Imanaka, T. Anazawa, F. Kumasaka, and H. Jippo, “Optimization
of the composition in a composite material for microelectronics
application using the Ising model,” Scientific Reports, vol. 11, no. 1,
pp. 1–7, 2021.

[13] A. Maruo, H. Igarashi, H. Oshima, and S. Shimokawa, “Optimization
of planar magnet array using digital annealer,” IEEE Transactions on
Magnetics, vol. 56, no. 3, pp. 1–4, 2020.

[14] D. Inoue and H. Yoshida, “Model predictive control for finite input
systems using the D-Wave quantum annealer,” Scientific Reports,
vol. 10, no. 1, pp. 1–10, 2020.

[15] N. Nikmehr, P. Zhang, and M. A. Bragin, “Quantum distributed unit
commitment: An application in microgrids,” IEEE Transactions on
Power Systems, vol. 37, no. 5, pp. 3592–3603, 2022.

[16] F. F. Silva, P. M. Carvalho, L. A. Ferreira, and Y. Omar, “A
QUBO formulation for minimum loss network reconfiguration,” IEEE
Transactions on Power Systems, vol. 38, no. 5, pp. 4559–4571, 2023.

[17] B. Krakoff, S. M. Mniszewski, and C. F. Negre, “Controlled precision
QUBO-based algorithm to compute eigenvectors of symmetric
matrices,” Plos One, vol. 17, no. 5, p. e0267954, 2022.

[18] P. M. Pardalos and G. P. Rodgers, “Computational aspects of a branch
and bound algorithm for quadratic zero-one programming,” Computing,
vol. 45, no. 2, pp. 131–144, 1990.

[19] A. Billionnet and A. Sutter, “Minimization of a quadratic pseudo-
Boolean function,” European Journal of Operational Research, vol. 78,
no. 1, pp. 106–115, 1994.

[20] A. Billionnet and S. Elloumi, “Using a mixed integer quadratic
programming solver for the unconstrained quadratic 0-1 problem,”
Mathematical Programming, vol. 109, no. 1, pp. 55–68, 2007.

[21] E. Boros, P. L. Hammer, R. Sun, and G. Tavares, “A max-flow
approach to improved lower bounds for quadratic unconstrained binary
optimization (QUBO),” Discrete Optimization, vol. 5, no. 2, pp. 501–
529, 2008.

[22] A. Billionnet, S. Elloumi, and M.-C. Plateau, “Improving the
performance of standard solvers for quadratic 0-1 programs by a
tight convex reformulation: The QCR method,” Discrete Applied
Mathematics, vol. 157, no. 6, pp. 1185–1197, 2009.

[23] G. R. Mauri and L. A. N. Lorena, “A column generation approach for
the unconstrained binary quadratic programming problem,” European
Journal of Operational Research, vol. 217, no. 1, pp. 69–74, 2012.

[24] P. Wang, C. Shen, A. van den Hengel, and P. H. Torr, “Large-
scale binary quadratic optimization using semidefinite relaxation and
applications,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 3, pp. 470–485, 2016.

[25] M. J. Schuetz, J. K. Brubaker, and H. G. Katzgraber, “Combinatorial
optimization with physics-inspired graph neural networks,” Nature
Machine Intelligence, vol. 4, no. 4, pp. 367–377, 2022.

[26] M. T. Veszeli and G. Vattay, “Mean field approximation for solving
QUBO problems,” Plos One, vol. 17, no. 8, p. e0273709, 2022.

[27] B. S. Lam and A. W. Liew, “A fast binary quadratic programming
solver based on stochastic neighborhood search,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 32–
49, 2020.

[28] T. M. Alkhamis, M. Hasan, and M. A. Ahmed, “Simulated annealing
for the unconstrained quadratic pseudo-Boolean function,” European
Journal of Operational Research, vol. 108, no. 3, pp. 641–652, 1998.

[29] F. Glover, “Tabu search—part I,” ORSA Journal on Computing, vol. 1,
no. 3, pp. 190–206, 1989.

[30] E. Boros, P. L. Hammer, and G. Tavares, “Local search heuristics
for quadratic unconstrained binary optimization (QUBO),” Journal of
Heuristics, vol. 13, no. 2, pp. 99–132, 2007.

[31] D. Karapetyan, A. P. Punnen, and A. J. Parkes, “Markov chain methods
for the bipartite Boolean quadratic programming problem,” European
Journal of Operational Research, vol. 260, no. 2, pp. 494–506, 2017.

[32] A. Lodi, K. Allemand, and T. M. Liebling, “An evolutionary heuristic
for quadratic 0–1 programming,” European Journal of Operational
Research, vol. 119, no. 3, pp. 662–670, 1999.

[33] J. Wang, “Discrete Hopfield network combined with estimation of
distribution for unconstrained binary quadratic programming problem,”
Expert Systems with Applications, vol. 37, no. 8, pp. 5758–5774, 2010.

[34] H. Che and J. Wang, “A collaborative neurodynamic approach to global
and combinatorial optimization,” Neural Networks, vol. 114, pp. 15 –
27, 2019.

[35] H. Oshiyama and M. Ohzeki, “Benchmark of quantum-inspired
heuristic solvers for quadratic unconstrained binary optimization,”
Scientific Reports, vol. 12, no. 1, pp. 1–10, 2022.

[36] S. Gu, T. Hao, and H. Yao, “A pointer network based deep learning
algorithm for unconstrained binary quadratic programming problem,”
Neurocomputing, vol. 390, pp. 1–11, 2020.

[37] M. Ohzeki, “Breaking limitation of quantum annealer in solving
optimization problems under constraints,” Scientific Reports, vol. 10,
no. 1, pp. 1–12, 2020.

[38] H. Ushijima-Mwesigwa, R. Shaydulin, C. F. Negre, S. M. Mniszewski,
Y. Alexeev, and I. Safro, “Multilevel combinatorial optimization across
quantum architectures,” ACM Transactions on Quantum Computing,
vol. 2, no. 1, pp. 1–29, 2021.

[39] J. J. Hopfield and D. W. Tank, “Computing with neural circuits: a
model,” Science, vol. 233, no. 4764, pp. 625–633, 1986.

[40] D. W. Tank and J. J. Hopfield, “Simple ‘neural’optimization networks:
an A/D converter, signal decision circuit, and a linear programming
circuit,” IEEE Trans. Circuits and Systems, vol. 33, no. 5, pp. 533–
541, 1986.

[41] Y. Xia, Q. Liu, J. Wang, and A. Cichocki, “A survey of
neurodynamic optimization,” IEEE Transactions on Emerging Topics
in Computational Intelligence, 2024, in press.

[42] Y. Xia and J. Wang, “A recurrent neural network for solving nonlinear
convex programs subject to linear constraints,” IEEE Transactions on
Neural Networks, vol. 16, no. 2, pp. 379–386, Feb. 2005.

[43] ——, “A bi-projection neural network for solving constrained quadratic
optimization problems,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 27, no. 2, pp. 214–224, 2016.

[44] W. Bian, L. Ma, S. Qin, and X. Xue, “Neural network for nonsmooth
pseudoconvex optimization with general convex constraints,” Neural
Networks, vol. 101, pp. 1–14, 2018.

[45] C. Xu, Y. Chai, S. Qin, Z. Wang, and J. Feng, “A neurodynamic
approach to nonsmooth constrained pseudoconvex optimization
problem,” Neural Networks, vol. 124, pp. 180–192, 2020.

[46] N. Liu and S. Qin, “A neurodynamic approach to nonlinear
optimization problems with affine equality and convex inequality
constraints,” Neural Networks, vol. 109, pp. 147–158, 2019.

[47] Z. Xia, Y. Liu, J. Wang, and J. Wang, “Two-timescale recurrent neural
networks for distributed minimax optimization,” Neural Networks, vol.
165, pp. 527–539, 2023.

[48] Q. Liu, S. Yang, and J. Wang, “A collective neurodynamic approach
to distributed constrained optimization,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 8, pp. 1747–1758, 2017.

[49] S. Yang, Q. Liu, and J. Wang, “A collaborative neurodynamic approach
to multiple-objective distributed optimization,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 4, pp. 981–992,
April 2018.

[50] S. Qin, X. Le, and J. Wang, “A neurodynamic optimization approach
to bilevel quadratic programming,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 11, pp. 2580–2591, Nov
2017.

[51] Z.-B. Xu, G.-Q. Hu, and C.-P. Kwong, “Asymmetric Hopfield-type
networks: theory and applications,” Neural Networks, vol. 9, no. 3, pp.
483–501, 1996.

[52] A. Asheralieva, “Optimal computational offloading and content caching
in wireless heterogeneous mobile edge computing systems with
Hopfield neural networks,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 5, no. 3, pp. 407–425, 2021.

[53] Y. Zhao, X. Liao, and X. He, “Distributed continuous and discrete
time projection neurodynamic approaches for sparse recovery,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 6,
no. 6, pp. 1411–1426, 2022.

[54] Z. Yan, J. Fan, and J. Wang, “A collective neurodynamic approach
to constrained global optimization,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 5, pp. 1206–1215, 2017.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

[55] H. Che and J. Wang, “A two-timescale duplex neurodynamic approach
to mixed-integer optimization,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 32, no. 1, pp. 36–48, Jan. 2021.

[56] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the National
Academy of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[57] B. Cernuschi-Frı́as, “Partial simultaneous updating in Hopfield
memories,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 19, no. 4, pp. 887–888, 1989.

[58] A. Likas and A. Stafylopatis, “Group updates and multiscaling: An
efficient neural network approach to combinatorial optimization,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 26, no. 2, pp. 222–232, 1996.

[59] D.-L. Lee, “New stability conditions for Hopfield networks in partial
simultaneous update mode,” IEEE Transactions on Neural Networks,
vol. 10, no. 4, pp. 975–978, 1999.

[60] J. Muñoz-Pérez, A. Ruiz-Sepúlveda, and R. Benı́tez-Rochel,
“Parallelism in binary Hopfield networks,” in Advances in
Computational Intelligence, J. Cabestany, I. Rojas, and G. Joya,
Eds. Springer Berlin Heidelberg, 2011, pp. 105–112.

[61] Y. Takefuji and K.-C. Lee, “A near-optimum parallel planarization
algorithm,” Science, vol. 245, no. 4923, pp. 1221–1223, 1989.

[62] Y. Takefuji and K. C. Lee, “Artificial neural networks for four-coloring
map problems and k-colorability problems,” IEEE Transactions on
Circuits and Systems, vol. 38, no. 3, pp. 326–333, 1991.

[63] G. Galán-Marı́n and J. Muñoz-Pérez, “Design and analysis of
maximum Hopfield networks,” IEEE Transactions on Neural Networks,
vol. 12, no. 2, pp. 329–339, 2001.

[64] G. E. Hinton and T. J. Sejnowski, “Optimal perceptual inference,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1983, pp. 448–453.

[65] E. H. Aarts and J. H. Korst, “Boltzmann machines as a model for
parallel annealing,” Algorithmica, vol. 6, no. 1, pp. 437–465, 1991.

[66] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[67] J. H. Korst and E. H. Aarts, “Combinatorial optimization on a
Boltzmann machine,” Journal of Parallel and Distributed Computing,
vol. 6, no. 2, pp. 331–357, 1989.

[68] E. H. Aarts and J. H. Korst, “Boltzmann machines for travelling
salesman problems,” European Journal of Operational Research,
vol. 39, no. 1, pp. 79–95, 1989.

[69] H. Li and J. Wang, “Capacitated clustering via majorization-
minimization and collaborative neurodynamic optimization,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 35, no. 5,
pp. 6679–6692, May 2024.

[70] M.-F. Leung and J. Wang, “A collaborative neurodynamic approach to
multiobjective optimization,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 11, pp. 5738 – 5748, 2018.

[71] J. Wang, J. Wang, and H. Che, “Task assignment for multivehicle
systems based on collaborative neurodynamic optimization,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 4,
pp. 1145–1154, 2020.

[72] M.-F. Leung and J. Wang, “Minimax and biobjective portfolio selection
based on collaborative neurodynamic optimization,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 7, pp. 2825–
2836, Jul. 2021.

[73] J. Wang, J. Wang, and Q.-L. Han, “Multi-vehicle task assignment based
on collaborative neurodynamic optimization with discrete Hopfield
networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 12, pp. 5274–5286, Dec. 2021.

[74] X. Li, J. Wang, and S. Kwong, “Hash bit selection via collaborative
neurodynamic optimization with discrete Hopfield networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 33,
no. 10, pp. 5116–5124, Oct. 2022.

[75] H. Li, J. Wang, N. Zhang, and W. Zhang, “Binary matrix factorization
via collaborative neurodynamic optimization,” Neural Networks, p.
106348, 2024.

[76] H. Che, C. Li, X. He, and T. Huang, “An intelligent method of swarm
neural networks for equalities-constrained nonconvex optimization,”
Neurocomputing, vol. 167, pp. 569–577, 2015.

[77] Y. Liu, A. A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan, A. Alsufyani,
and S. Bourouis, “Simulated annealing-based dynamic step shuffled
frog leaping algorithm: Optimal performance design and feature
selection,” Neurocomputing, vol. 503, pp. 325–362, 2022.

[78] Y. Chen, A. Zhou, and S. Das, “Utilizing dependence among variables
in evolutionary algorithms for mixed-integer programming: A case

study on multi-objective constrained portfolio optimization,” Swarm
and Evolutionary Computation, vol. 66, p. 100928, 2021.

[79] Y. Chen and A. Zhou, “Multiobjective portfolio optimization via pareto
front evolution,” Complex & Intelligent Systems, vol. 8, no. 5, pp. 4301–
4317, 2022.

[80] E. H. Houssein, D. Oliva, N. A. Samee, N. F. Mahmoud, and M. M.
Emam, “Liver cancer algorithm: A novel bio-inspired optimizer,”
Computers in Biology and Medicine, vol. 165, p. 107389, 2023.

[81] J. Kennedy and R. Mendes, “Population structure and particle swarm
performance,” in Proceedings of the 2002 Congress on Evolutionary
Computation., vol. 2, 2002, pp. 1671–1676.

[82] Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary PSO with mutation
operator for feature selection using decision tree applied to spam
detection,” Knowledge-Based Systems, vol. 64, pp. 22–31, 2014.

[83] X. Le, Z. Yan, and J. Xi, “A collective neurodynamic system for
distributed optimization with applications in model predictive control,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 1, no. 4, pp. 305–314, 2017.

[84] X. Li, J. Wang, and S. Kwong, “Boolean matrix factorization based on
collaborative neurodynamic optimization with Boltzmann machines,”
Neural Networks, vol. 153, pp. 142–151, 2022.

[85] M.-F. Leung, J. Wang, and H. Che, “Cardinality-constrained portfolio
selection via two-timescale duplex neurodynamic optimization,” Neural
Networks, vol. 153, pp. 399–410, 2022.

[86] H. Che, J. Wang, and A. Cichocki, “Sparse signal reconstruction via
collaborative neurodynamic optimization,” Neural Networks, vol. 154,
pp. 255–269, 2022.

[87] G. A. Kochenberger, F. Glover, B. Alidaee, and C. Rego, “A unified
modeling and solution framework for combinatorial optimization
problems,” OR Spectrum, vol. 26, no. 2, pp. 237–250, 2004.

[88] A. Lucas, “Ising formulations of many NP problems,” Frontiers in
Physics, vol. 2, p. 5, 2014.

[89] M. Zaman, K. Tanahashi, and S. Tanaka, “PyQUBO: Python library for
mapping combinatorial optimization problems to QUBO form,” IEEE
Transactions on Computers, vol. 71, no. 4, pp. 838–850, 2022.

[90] E. Balas and M. W. Padberg, “Set partitioning: A survey,” SIAM
Review, vol. 18, no. 4, pp. 710–760, 1976.

[91] Q. Wu and J.-K. Hao, “A hybrid metaheuristic method for the
maximum diversity problem,” European Journal of Operational
Research, vol. 231, no. 2, pp. 452–464, 2013.

[92] A. Billionnet and É. Soutif, “An exact method based on Lagrangian
decomposition for the 0–1 quadratic knapsack problem,” European
Journal of Operational Research, vol. 157, no. 3, pp. 565–575, 2004.

[93] R. E. Burkard, “Quadratic assignment problems,” European Journal of
Operational Research, vol. 15, no. 3, pp. 283–289, 1984.

[94] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, and
T. Querido, “A survey for the quadratic assignment problem,” European
Journal of Operational Research, vol. 176, no. 2, pp. 657–690, 2007.

[95] N. Christofides and E. Benavent, “An exact algorithm for the quadratic
assignment problem on a tree,” Operations Research, vol. 37, no. 5,
pp. 760–768, 1989.

[96] P. Chu and J. E. Beasley, “Constraint handling in genetic algorithms:
the set partitioning problem,” Journal of Heuristics, vol. 4, no. 4, pp.
323–357, 1998.

[97] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267,
no. 1, pp. 66–73, 1992.

[98] T. A. Feo and M. G. Resende, “Greedy randomized adaptive search
procedures,” Journal of Global Optimization, vol. 6, no. 2, pp. 109–
133, 1995.

[99] C. Garcı́a-Martı́nez, F. J. Rodriguez, and M. Lozano, “Tabu-enhanced
iterated greedy algorithm: A case study in the quadratic multiple
knapsack problem,” European Journal of Operational Research, vol.
232, no. 3, pp. 454–463, 2014.

[100] T. Saraç and A. Sipahioglu, “A genetic algorithm for the quadratic
multiple knapsack problem,” in International Symposium on Brain,
Vision, and Artificial Intelligence. Springer, 2007, pp. 490–498.

[101] M. Kong, P. Tian, and Y. Kao, “A new ant colony optimization
algorithm for the multidimensional knapsack problem,” Computers &
Operations Research, vol. 35, no. 8, pp. 2672–2683, 2008.

[102] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of International Conference on Neural Networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[103] J. Skorin-Kapov, “Tabu search applied to the quadratic assignment
problem,” ORSA Journal on Computing, vol. 2, no. 1, pp. 33–45, 1990.

[104] T. Peng, H. Wang, and D. Zhang, “Simulated annealing for the
quadratic assignment problem: A further study,” Computers &
Industrial Engineering, vol. 31, no. 3-4, pp. 925–928, 1996.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 13

[105] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,”
IEEE Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39,
2006.

[106] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, 2014.

Hongzong LI received the B.E. degree in
automation from Northeastern University, Shenyang,
Liaoning, China, in 2020. He is currently a
Ph.D. candidate with the Department of Computer
Science, City University of Hong Kong, Hong Kong.
His current research interests include optimization,
computational intelligence, and machine learning.

Jun Wang (Life Fellow) received his B.S. and M.S.
degrees in 1982 and 1985 from Dalian University
of Technology, Dalian, China, and his Ph.D. degree
in 1991 from Case Western Reserve University,
Cleveland, Ohio, USA. He held various academic
positions at Dalian University of Technology, Case
Western Reserve University, University of North
Dakota, and the Chinese University of Hong Kong,
Hong Kong. He also held various short-term or
part-time visiting positions at the U.S. Air Force
Armstrong Laboratory, Dayton, Ohio, USA; RIKEN

Brain Science Institute, Tokyo, Japan; Huazhong University of Science and
Technology, Wuhan, China; Shanghai Jiao Tong University, Shanghai, China;
Dalian University of Technology, Dalian, China; and Swinburne University
of Technology, Melbourne, Australia. He is currently a chair professor at
City University of Hong Kong, Hong Kong. He was a recipient of several
awards such as the Research Excellence Award from the Chinese University of
Hong Kong (2008-2009), Outstanding Achievement Award from Asia-Pacific
Neural Network Assembly (2011), IEEE Transactions on Neural Networks
Outstanding Paper Award (2011), Neural Networks Pioneer Award from
the IEEE Computational Intelligence Society (2014), and Norbert Wiener
Award from the IEEE Systems, Man and Cybernetics Society (2019). He
served as the General Chair of the 13th/25th International Conference on
Neural Information Processing (2006/2018) and the IEEE World Congress
on Computational Intelligence (2008). He is an IEEE Systems, Man, and
Cybernetics Society Distinguished Lecturer (2017-2022), was a Distinguished
Lecturer of IEEE Computational Intelligence Society (2010-2012, 2014-2016).
He was the Editor-in-Chief of the IEEE Transactions on Cybernetics (2014-
2019).


