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From Soft Clustering to Hard Clustering:
A Collaborative Annealing Fuzzy c-Means Algorithm

Hongzong Li and Jun Wang , Life Fellow, IEEE

Abstract—The fuzzy c-means clustering algorithm is the most
widely used soft clustering algorithm. In contrast to hard clus-
tering, the cluster membership of data generated using the fuzzy
c-means algorithm is ambiguous. Similar to hard clustering al-
gorithms, the clustering results of the fuzzy c-means clustering
algorithm are also suboptimal with varied performance depending
on initial solutions. In this paper, a collaborative annealing fuzzy
c-means algorithm is presented. To address the issue of ambiguity,
the proposed algorithm leverages an annealing procedure to phase
out the fuzzy cluster membership degree toward a crispy one by
reducing the exponent gradually according to a cooling schedule. To
address the issue of suboptimality, the proposed algorithm employs
multiple fuzzy c-means modules to generate alternative clusters
based on memberships repeatedly reinitialized using a metaheuris-
tic rule. Experimental results on eight benchmark datasets are elab-
orated to demonstrate the superiority of the proposed algorithm to
thirteen prevailing hard and soft algorithms in terms of internal
and external cluster validity indices.

Index Terms—Annealing procedure, collaborative clustering,
fuzzy c-means (FCM) clustering, k-means (KM) clustering.

I. INTRODUCTION

C LUSTERING is a popular unsupervised or semisuper-
vised learning technique to explore the hidden structures

of datasets. It is to group unlabeled data into multiple disjoint
subsets with high intracluster similarity and low intercluster
similarity. It arises in numerous applications, such as image
segmentation [1], information retrieval [1], data mining [1], doc-
ument clustering [2], video surveillance [2], feature selection [3],
and pattern recognition [3].

Over the past decades, numerous clustering algorithms have
been proposed, and they are mainly divided into two classes,
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including hard and soft clustering. Hard clustering is based
on the assumption of mutually exclusive clusters, whereas
soft clustering relaxes the assumption allowing overlapped
clusters. In addition, hard clustering provides a simpler and
more straightforward interpretation of the results, whereas soft
clustering usually requires further interpretation and analy-
sis to determine appropriate cutoff values for membership
assignments.

Hard clustering assigns each datum to one and only one
cluster. Hard clustering methods may be classified as full-space
clustering algorithms, subspace clustering algorithms, feature-
weighted clustering algorithms, and multiview clustering algo-
rithms, depending on the feature spaces of their operations. Sub-
space clustering methods include the deep subspace clustering
algorithm [4] and the robust possibilistic k-subspace cluster-
ing algorithm [5]. Feature-weighted clustering methods include
the entropy weighting k-means (KM) clustering algorithm [6],
the entropy-weighted power k-means (EWPKM) clustering al-
gorithm [7], and the LASSO-weighted KM clustering algo-
rithm [8]. Multiview clustering methods include the weighted
multiview possibilistic c-means clustering algorithm with L2
regularization [9], and the multiview adjacency-constrained hi-
erarchical clustering (HC) algorithm [10]. The hard clustering
methods may be classified into hierarchical-based, center-based,
distribution-based, and density-based clustering algorithms, ac-
cording to the structure of the algorithms. HC-based methods
cluster data based on the rule that closer data points exhibit more
similarity to each other than the data points lying farther away, in-
cluding divisive hierarchical algorithms [11] and agglomerative
hierarchical algorithms [12]. The center-based clustering meth-
ods cluster data based on the rule that similarity is derived by
the closeness of data to clusters, including KM [13], k-medoids
algorithms [14], [15], k-harmonic means [16], and spectral
clustering (SC) algorithms [17], [18], [19]. Distribution-based
clustering methods cluster data based on the probability of data
belonging to a specific distribution, including the expectation-
maximization for Gaussian mixture model algorithms [20].
Density-based clustering methods cluster data based on the den-
sity of data points in the feature space, including the mean-shift
algorithm [21], and the temporal streaming fuzzy density-based
spatial clustering algorithm [22]. In addition, several collabo-
rative clustering methods were proposed [23], including deep
multiview collaborative clustering [24]. In spite of the progress,
the clustering methods cannot guarantee the global optimality
of clustering results. To mitigate the difficulty of discontinuity
in the underlying objective function of KM, the power k-means
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(PKM) algorithm clusters data by minimizing the majorization
function of an annealed power-mean function [25]. Though
the clustering performance using PKM is significantly im-
proved, the clustering result is still suboptimal and dependent on
initialization. To achieve optimal clustering results, the col-
laborative annealing power k-means++ (CAPKM++) algo-
rithm clusters data by employing multiple PKM mod-
ules reinitialized using a particle swarm optimization
rule [26]. CAPKM++ is demonstrated to outperform PKM
and many other baselines [26]. As an upgraded version
of CAPKM++, CAPKM++2.0 [27] is shown to be able
to improve clustering efficiency via reinitialization during
annealing [27].

As a relaxation of hard clustering, soft clustering allows
each datum to belong to multiple clusters with membership
degrees. Soft clustering methods include possibilistic clustering
algorithms [28] and fuzzy clustering algorithms [29]. Possibilis-
tic clustering methods include the robust automatic merging
possibilistic clustering algorithm [30], the sparse possibilistic
c-means algorithm [31], and the robust possibilistic k-subspace
clustering algorithm [5]. Fuzzy clustering methods include the
fuzzy c-means (FCM) algorithm [32], the centroid autofused
hierarchical FCM clustering algorithm [33], fuzzy density peaks
clustering [34], the robust jointly sparse fuzzy clustering al-
gorithm [35], the fuzzy low-rank structural clustering algo-
rithm [36], and the robust FCM algorithm [37]. Soft clustering
introduces ambiguity in clustering results due to assigning each
data point a membership value to each cluster. In addition,
similar to existing hard clustering methods, the results of the
soft clustering methods are also suboptimal.

FCM is one of the popular soft clustering methods due to
its efficiency and simplicity [29]. However, it suffers the same
drawback as other fuzzy clustering algorithms. To remedy the
shortcoming of performance sensitivity to initialization, many
alternative methods have been proposed, such as the FCM
variants with improved objective function and initialization,
and additional constraints. FCM-like algorithms with improved
objective function include adaptive FCM algorithm [38], gen-
eralized FCM clustering [39], enhanced FCM [40], fast gen-
eralized FCM [41], fuzzy weighted c-means [42], [43], gen-
eralized FCM algorithm with improved fuzzy partition [44],
fuzzy local information c-means [45], Bayesian fuzzy clustering
(BFC) [46], and kernel fuzzy c-means clustering (KFCM) [47].
FCM with improved initialization includes multistage random
sampling [48], the genetic algorithm [49], the Gustafson–Kessel
algorithm [50], initialization schemes by utilizing color space in
image segmentation [51], [52], the Markov random field [53],
and the two-phase fuzzy c-means (2PFCM) [54]. Constrained
FCM algorithms with additional constraints include the FCM
method with spatial constraints [55], [56].

To achieve optimal clustering performance and eliminate
the ambiguity in cluster membership and the dependency of
performance on initial solutions, we propose the collaborative
annealing fuzzy c-means based on FCM (CAFCM). An anneal-
ing procedure is used in CAFCM to phase out the fuzziness of
cluster membership. In addition, multiple modules are employed

to engender alternative clusters and reinitialized repeatedly us-
ing a metaheuristic rule to maximize clustering quality and
eliminate the influence of initialization on clustering perfor-
mance. The innovative contributions of this work are summa-
rized as follows.

1) We theoretically prove that the underlying objective func-
tion of FCM is equivalent to that of PKM without anneal-
ing.

2) We propose CAFCM with a cooling schedule and experi-
mentally demonstrate that the polynomial cooling sched-
ule is the most cost-effective one.

3) We empirically estimate the computational complexity of
CAFCM based on many datasets.

4) We experimentally demonstrate that CAFCM outperforms
existing hard and soft clustering algorithms in terms of the
mean values and standard deviations of many indices.

The rest of this paper is organized as follows. The related
work on KM, FCM, PKM, CAPKM++, and CAPKM++2.0 is
provided in Section II. The details of the CAFCM algorithm are
presented in Section III. Experimental results on eight datasets
are reported in Section IV. The paper is concluded in Section V.

II. RELATED WORK

A. KM Algorithm

The KM algorithm is one of the most popular unsupervised
learning algorithms. It groups the data into a preset number of
clusters by minimizing the following objective function [13]:

f(Θ) =

n∑
i=1

min
1≤j≤k

||xi − θj ||22, (1)

where X = {x1, . . ., xn} ∈ �n×p is an unlabeled dataset, n is
the number of data points, k is the number of clusters, p is the
number of features, Θ = [θ1, . . . , θk], and θj ∈ �p is the j-th
center.

B. FCM Algorithm

As an extension of KM, FCM was developed by Dunn [57],
and improved by Bezdek [32]. Differing from KM that assigns
each data point to exactly one cluster, FCM allows data points
to belong to multiple clusters with different degrees of member-
ship. It is based on the minimization of the following biconvex
objective function [32]:

fm(μ,Θ) =

n∑
i=1

k∑
j=1

μm
ij ||xi − θj ||2, (2)

where μij ∈ [0, 1] is the degree of membership of the i-th
datum in the j-th cluster, m > 1 is an exponent for controlling
the degree of fuzzy overlap, and θj is the center of the j-th
cluster. The fuzzy objective function is subject to a constraint∑k

j=1 μij = 1 (i = 1, . . ., n); i.e., for each datum, the sum of the
membership degrees over all clusters is one. For j = 1, . . ., k,
the centers are updated as follows [32]:

θj =

∑n
i=1 μ

m
ijxi∑n

i=1 μ
m
ij

. (3)
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For i = 1, . . ., n and j = 1, . . ., k, the degrees are updated alter-
natingly as follows [32]:

μij =
1∑k

l=1(
||xi−θj ||
||xi−θl|| )

2
m−1

. (4)

Similar to KM, FCM iterates over (3) and (4) until no degree
changes. Due to the biconvexity of the fuzzy objective function
in (2), the alternating method cannot guarantee to converge to
the global optimal cluster.

Note that limm→1 μij ∈ {0, 1}; i.e., FCM degenerates to
KM [29].

C. PKM Algorithm

PKM [25] is proposed to improve KM algorithms by mini-
mizing the following annealed power function:

fs(Θ) :=

n∑
i=1

⎛
⎝1

k

k∑
j=1

||xi − θj ||2 s2

⎞
⎠

1
s

, (5)

where s < 0 denotes a power parameter.
Rather than minimizing the concave power-mean functions

in (5), PKM minimizes the following convex majorization
function [25]:

f̂s(Θ) =

n∑
i=1

k∑
j=1

wij(t)||xi − θj(t+ 1)||22. (6)

The weights are updated as follows [25]:

wij(t) =
||xi − θj(t)||2(s−1)

(
∑k

l=1 ||xi − θl(t)||2 s)1− 1
s

. (7)

The clusters are updated as follows [25]:

θj(t+ 1) =
1∑n

i=1 wij(t)

n∑
i=1

wij(t)xi.

The power parameter s is decreased at each step according to
the following cooling schedule [25]:

s(t+ 1) = ηs(t),

where s(0) < 0 and η > 1.
Let s = − 1

m−1 . The weight updating rule in (7) is rewritten
as follows:

wij =
||xi − θj ||2(s−1)

(
∑k

l=1 ||xi − θl||2 s)1− 1
s

=
||xi − θj ||−2m/(m−1)

(
∑k

l=1 ||xi − θl||−2/(m−1))m
. (8)

Via substituting the weight updating rule in (8), the objective
function in (5) is rewritten as follows:

f̂s(Θ) =

n∑
i=1

k∑
j=1

wij ||xi − θj ||2

=

n∑
i=1

k∑
j=1

||xi − θj ||−2m/(m−1)

(
∑k

l=1 ||xi − θl||−2/(m−1))m

||xi − θj ||2. (9)

The degree updating rule of FCM in (4) is rewritten as follows:

μij =
1∑k

l=1(
||xi−θj ||
||xi−θl|| )

2
m−1

=
||xi − θj ||−2/(m−1)∑k
l=1 ||xi − θl||2/(m−1)

. (10)

Via substituting degree updating rule (10), the objective function
of FCM in (2) is rewritten as follows:

fm(μ,Θ) =
n∑

i=1

k∑
j=1

μm
ij ||xi − θj ||2

=
n∑

i=1

k∑
j=1

||xi − θj ||−2m/(m−1)

(
∑k

l=1 ||xi − θl||−2/(m−1))m

||xi − θj ||2. (11)

It indicates that the objective functions of FCM in (2) and PKM
in (6) are equivalent.

D. CAPKM++ and CAPKM++2.0 Algorithms

PKM is demonstrated in [25] to perform better than Lloyd’s
algorithm [13] and k-harmonic means [16]. Nevertheless, its
clustering results are not globally optimal since its performance
heavily depends on the anchor points where its majorization
functions are located. To address the aforementioned issue,
CAPKM++ [26] employs multiple PKM modules to generate
centers for alternative clusters, and use a particle swarm opti-
mization rule for repositioning the initial centers.

CAPKM++2.0 [27] is an upgraded version of CAPKM++.
CAPKM++2.0 reinitializes the weights in the majorization func-
tion during annealing rather than reinitializing cluster centers af-
ter annealing. In addition, CAPKM++2.0 minimizes the power-
mean functions directly instead of their majorization function
as in PKM and CAPKM++. It is demonstrated in [27] that
CAPKM++2.0 is more efficient than CAPKM++ in terms of
algorithmic complexities.

III. ALGORITHM DESCRIPTION

The proposed CAFCM algorithm consists of triple loops: an
FCM clustering loop, a reinitialization loop, and an annealing
loop. In the FCM clustering loop, multiple FCM modules iterate
until convergence. In the reinitialization loop, the FCM mod-
ules are reinitialized. In the annealing loop, an exponent m(t)
decreases iteratively. The fuzzy objective function in (2) is min-
imized during such an annealing process, similar to PKM [25],
CAPKM++ [26], and CAPKM++2.0 [27]. As shown in Fig. 1,
the following three types of cooling schedules may be used
for the annealing of exponent m(t). An exponential cooling
schedule

me(t) = (me(0)− 1) exp(−t) + 1. (12)
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Fig. 1. Annealing curves of the three cooling schedules.

A polynomial cooling schedule

mp(t) =
mp(0)− 1

t+ 1
+ 1. (13)

A logarithmic cooling schedule

ml(t) =
ml(0)− 1

ln(t+ e)
+ 1. (14)

Note that limt→∞me(t) = limt→∞mp(t) = limt→∞ml(t)
= 1. Each of the three cooling schedules has its pros and cons.
As shown in Fig. 1, the exponential cooling schedule is the
fastest, and it may cause prematurity in analogy to simulated
annealing. The logarithmic cooling schedule is the slowest,
and it takes a very long time to reduce to 1. The polynomial
schedule is in-between.

In analogy to CAPKM++ [26] and CAPKM++2.0 [27], to
overcome the biconvexity, μ(0) is repeatedly reinitialized ac-
cording to the following particle swarm optimization rule in [58]:

v(i)(t+ 1) = c0v
(i)(t) + c1r1(μ

(i)∗ − μ(i)(t)) (15a)

+ c2r2(μ
∗ − μ(i)(t)), (15b)

μ(i)(t+ 1) = μ(i)(t) + v(i)(t+ 1), (15c)

where v(i)(t) is an incremental vector of the i-th module, μ(i)∗

is the current best degree vector of the i-th module, μ(i)(t) is the
current degree vector of the i-th module, μ∗ is the current best
degree vector of the multiple modules, c0 ∈ [0, 1] is a constant,
c1, c2 are two positive constants, and r1, r2 are two random
numbers in [0,1].

The high diversity of solutions is essential for improving
clustering performance. A diversity measure of solutions is
defined as follows:

δ(μ) =
1

Nnk

N∑
j=1

‖μ(j) − μ∗‖2, (16)

where N is the population size (i.e., the number of alternative
cluster sets).

Mutation operation is a commonly used method to maintain
a certain level of diversity and prevent premature convergence.
If the diversity measure is below a threshold (i.e., δ(μ) < δmin),

Fig. 2. Flowchart of CAFCM.

then a wavelet mutation operator is used to assure the diver-
sity [59]

μ(i)(t+ 1) =

{
μ(i)(t) + ζ(μ(i) − μ(i)(t)) ζ > 0

μ(i)(t) + ζ(μ(i)(t)− μ(i)) ζ < 0,
(17)

where μ(i) = 1 and μ(i) = 0 are the upper bound and lower
bound of the membership degree of the i-th module, and ζ is
defined by a wavelet function

ζ =
1√
a
exp−1

2

(
ψ

a

)2

cos

(
5ψ

a

)
,

where a = exp (10(�/�max)) is the amplitude of the wavelet
function, �max is the maximum iterative number, and ψ is the
frequency of the wavelet function to be randomly generated from
the interval [−2.5a, 2.5a].

Fig. 2 portrays a flowchart of the CAFCM algorithm, and
Algorithm 1 details its procedure. In Steps 6–10, centers Θ
and degrees μ are updated alternately until convergence, where
ε in Step 10 is to determine whether fm(μ(i)(t̂),Θ(i)(t̂)) and
fm(μ(i)(t̂− 1),Θ(i)(t̂− 1)) are close enough. In Steps 11–13,
the individual best degrees μ̃(i) are determined. In Steps 15–21,
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Algorithm 1: CAFCM.

the group best degrees μ∗ are determined and the termination
counter is updated. In Steps 22–25, the degrees are reinitialized
according to (15). In Step 26, the diversity of the N sets of
degrees is measured according to (16). In Steps 27–29, the
wavelet mutation operator in (17) is performed if the diversity
measure is below the preset threshold δmin. In Step 32, the
exponent m is reduced according to one of the three cooling
schedules. In Step 10, the termination condition whether m is
close to 1 is determined. The code of CAFCM is available in
Github.1

1[Online]. Available: https://github.com/HongzongLI-CS/CAFCM-Github

TABLE I
INFORMATION ABOUT THE EIGHT BENCHMARK DATASETS AND THE

CORRESPONDING HYPER-PARAMETER VALUES USED IN CAFCM

IV. EXPERIMENTAL RESULTS

In the experiments, the CAFCM parameters are set as follows.
The value of the initial exponent m(0) is set to 2, as in most of
the existing references. The diversity threshold δmin is set to a
sufficiently small value (i.e., 10−3). In the FCM clustering loop
of CAFCM, the parameter ε is also set to a sufficiently small
value (i.e., 10−3) as a stopping criterion of cluster membership
updating. In the particle swarm optimization rule in (15), c0, c1,
and c2 are set to 1, as typically in many references, e.g., in [26]
and [27].

A. Cooling Schedules

In this section, we compare the performances of CAFCM
with the three cooling schedules. To make a fair comparison, the
three cooling schedules are set to the same number of iterations.
Since the logarithmic cooling schedule takes a long time for
m(t) to reduce to 1, instead of iterating over every t, sampling
time τ(t) is used under the condition that the value of ml(τ)
is larger than that of the polynomial cooling schedule at every
sampling time (i.e., ml(τ(t)) > mp(t)) to keep its annealing

process slower than the polynomial one. Since mp(0)
t+2 >

mp(0)−1
t+1

for t > mp(0)− 1, letting ml(0)−1
ln (τ(t)+e) + 1 =

mp(0)
t+2 + 1 enables

ml(τ(t)) > mp(t). The solution to the equation is τ(t) =

exp( (ml(0)−1)(t+2)
ml(0)

)− e, assuming that ml(0) = mp(0).
The experimental results are based on eight commonly used

datasets summarized in Table I. In addition, to show the su-
periority of CAFCM with the logarithmic cooling schedule on
the dataset that is difficult to cluster, a dataset under uniform
distribution (UDD) is generated, where n = 5000 and p = 2.

Fig. 3 shows 20-run Monte Carlo test results of CAFCM
(N = 2 andM = 5) with the three cooling schedules on the six
datasets in Table I and the UDD. As shown in Fig. 3, CAFCM
with the polynomial cooling schedule or the logarithmic cooling
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Fig. 3. Monte Carlo test results of CAFCM (N = 2 and M = 5) with the
three cooling schedules on the six datasets and the UDD with two different k
values. (a) NCI9. (b) WarpPIE10P. (c) WQ-White. (d) PageBlock. (e) Texture.
(f) Optdigits. (g) UDD (k = 40). (h) UDD (k = 60).

schedule outperforms that with the exponential cooling sched-
ule. It is also shown in Fig. 3 that CAFCM with the logarithmic
cooling schedule outperforms that with the polynomial cooling
schedule on NCI9, Texture, and UDD, especially on the UDD,
and the superiority is more evident for a larger k value on the
UDD.

Although the performance of CAFCM with the logarithmic
cooling schedule is better than that with the polynomial cooling
schedule, it takes too long time to reach 1, or it is difficult to set a
reasonable sampling time to achieve high performance. In view
of the fact that CAFCM with the polynomial cooling schedule

performs well on the six datasets in Table I, the polynomial
cooling schedule mp(t) is used in all the other experiments.

B. Hyperparameters Selection

Similar to CAPKM++ [26] and CAPKM++2.0 [27], the val-
ues of two hyperparametersN andM in Algorithm 1 are selected
based on 50-run Monte Carlo tests on the six datasets. Fig. 4
depicts the boxplots of the Monte Carlo test results obtained
using the CAFCM algorithm over 20 runs on the six datasets.
As shown in Fig. 4, the results of the objective function values
reaching zero standard deviation with N = 2 and M = 10 on
NCI9, N = 2 and M = 5 on WQ-White, N = 2 and M = 15
on WarpPIE10P,N = 2 andM = 5 on PageBlocks,N = 3 and
M = 15on Texture, andN = 2 andM = 5on Optdigits. Table I
tabulates the values of the two hyperparameters (i.e.,N andM )
used in CAFCM on the eight datasets.

C. Convergent Behaviors

Fig. 5 depicts twelve snapshots of the convergent centers Θ
and the convergent degrees μ values in the FCM clustering loop
(Steps 6–10) of CAFCM on the six datasets. Fig. 6 depicts the
monotonically decreasing values of fm(μ,Θ) in (2) correspond-
ing to Θ and μ in Fig. 5. They show that the centers and the
degrees reach their equilibria and the fuzzy objective function
values reach their minima with a range of 40–400 iterations in
the FCM clustering loop of CAFCM.

Fig. 7 depicts the monotonically decreasing values of f(Θ) in
the annealing loop (Steps 2–33) of CAFCM on the six datasets.
It shows that CAFCM converges within 120 iterations on NCI9,
80 iterations on WarpPIE10P, 1 000 iterations on WineQuality-
White, 30 iterations on PageBlocks, 160 iterations on Texture,
and 1 500 iterations on Optidigits.

D. Performance Comparison

The clustering performance of CAFCM is compared with
the following six fuzzy clustering algorithms and seven crisp
clustering algorithm: KM,10 k-mean++ (KM++),11 PKM [25],
EWPKM,12 (SC,13 HC,14 CAPKM++2.0 [27], BFC [46], fuzzy
subspace clustering (FSC) [64], maximum entropy clustering
(MEC) [65], FCM,15 KFCM [47], and 2PFCM [54]. The clus-
tering results of the fuzzy clustering algorithms (i.e., BFC, FSC,
MEC, FCM, KFCM, and 2PFCM) are determined by the maxi-
mum fuzzy membership degrees. The code of PKM is provided
by the authors of [25]. The agglomerative HC algorithm is used.
The code of BFC is obtained from a link in [46]. As BFC
involves the Cholesky factorization of the covariance matrices
of data, and the covariance matrices of some data are not positive

10[Online]. Available: https://www.mathworks.com/help/stats/kmeans.
html?s_tid=srchtitle_kmean_1

11[Online]. Available: https://github.com/xuyxu/Clustering
12[Online]. Available: https://github.com/DebolinaPaul/EWP
13[Online]. Available: https://www.mathworks.com/help/stats/

spectralcluster.html
14[Online]. Available: https://www.mathworks.com/help/stats/hierarchical-

clustering.html?s_tid=srchtitle_hierarchical%20clustering_1
15[Online]. Available: https://www.mathworks.com/help/fuzzy/fcm.html
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Fig. 4. Monte Carlo test results using CAFCM with several values of N and M on the six datasets. (a) NCI9. (b) WarpPIE10P. (c) WineQuality-White.
(d) PageBlock. (e) Texture. (f) Optdigits.

Fig. 5. Snapshots of the convergent centers Θ and the membership degrees μ values in the FCM clustering loop of CAFCM (Steps 6–10) on the six datasets,
where the lines in the left-hand side subplots portray the first feature values of k centers, and the lines in the right-hand side subplots portray the k membership
degrees. (a) NCI9. (b) WarpPIE10P. (c) WineQuality-White. (d) PageBlock. (e) Texture. (f) Optdigits.

definite, BFC may not be applicable to some datasets. The codes
of FSC and MEC are obtained from Github.16 The codes of
KFCM and 2PFCM are shared by the authors of [47] and [54],
respectively. The Euclidean distance is used as the dissimilarity
measure in all algorithms.

The performance evaluation for the experimental results is
based on nineteen internal criteria listed in Table S-I in the
Supplementary Materials, and three external criteria described
in Section S-I in the Supplementary Materials, Due to the
wide range of values of WGSS, CHI, XBI, and TWI, they are

16[Online]. Available: https://github.com/kailugaji/Fuzzy_Clustering_
Algorithms

normalized by p, (n− k)/(k − 1), n, and pk, respectively, to
facilitate the later tabular presentation.

Tables II–V tabulate the means and standard deviations of
the internal and external cluster validity indices values over 50
runs by using CAFCM and thirteen prevailing algorithms with
random initialization on the eight datasets, where × indicates
“not applicable”, and the best and second-best results are
boldfaced and underlined, respectively. Specifically, CAFCM
achieves 81 best and 20 second-best means out of 168 en-
tries (i.e., 48.21% and 60.12% for the best and the best plus
the second-best), and CAPKM++2.0 ranks in second place,
achieving 40 best and 55 second-best means (i.e., 23.81% and
56.55%), and SC ranks in third place, achieving 23 best and
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TABLE II
MEAN VALUES AND STANDARD DEVIATIONS OF INTERNAL AND EXTERNAL CLUSTER VALIDITY INDICES RESULTING FROM CAFCM, AND THIRTEEN BASELINES

ON NCI9 AND WARPPIE10P, WHERE N = 2 AND M = 10 IN CAPKM++2.0 AND CAFCM ON NCI9, AND N = 2 AND M = 5 IN

CAPKM++2.0 AND CAFCM ON WARPPIE10P
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TABLE III
MEAN VALUES AND STANDARD DEVIATIONS OF INTERNAL AND EXTERNAL CLUSTER VALIDITY INDICES RESULTING FROM CAFCM, AND THIRTEEN BASELINES

ON WQ-WHITE AND PAGEBLOCKS, WHERE N = 2 AND M = 15 IN CAPKM++2.0 AND CAFCM ON WQ-WHITE, AND N = 2 AND M = 5 IN

CAPKM++2.0 AND CAFCM ON PAGEBLOCKS
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TABLE IV
MEAN VALUES AND STANDARD DEVIATIONS OF INTERNAL AND EXTERNAL CLUSTER VALIDITY INDICES RESULTING FROM CAFCM, AND THIRTEEN BASELINES

ON TEXTURE AND OPTDIGITS, WHERE N = 3 AND M = 15 IN CAPKM++2.0 AND CAFCM ON TEXTURE, AND N = 2 AND M = 5 IN

CAPKM++2.0 AND CAFCM ON OPTDIGITS
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TABLE V
MEAN VALUES AND STANDARD DEVIATIONS OF INTERNAL AND EXTERNAL CLUSTER VALIDITY INDICES RESULTING FROM CAFCM, AND THIRTEEN BASELINES

ON EGS AND LR, WHERE N = 2 AND M = 5 IN CAPKM++2.0 AND CAFCM ON EGS, AND N = 3 AND M = 15 IN CAPKM++2.0
AND CAFCM ON LR
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Fig. 6. Snapshots of the fuzzy objective function values of fm(μ,Θ) in (2)
with m = 1.5 in the FCM clustering loop of CAFCM (Steps 6–10) on the six
datasets. (a) NCI9. (b) WarpPIE10P. (c) WineQuality-White. (d) PageBlock.
(e) Texture. (f) Optdigits.

3 second-best means (i.e., 13.69% and 15.48%). Fig. 8 depicts
the counts of the best and best plus second-best index mean
values by using CAFCM and the thirteen baselines. As shown
in Fig. 8, CAFCM, CAPKM+++2.0, and SC rank in the first
three places in terms of the counts of the best index mean
values. CAFCM, CAPKM+++2.0, and PKM rank in the first
three places in terms of the counts of best plus second-best index
mean values. In addition, the standard deviations of the results
using CAFCM are zero, indicating the highest consistency of
the algorithm.

E. Complexity Analysis

As shown in Tables I and Table S-II in the Supplementary
Materials, the suitable number of modules N is 2 or 3, for 18
datasets with various values of n, p, and k. As N is a small
constant, the spatial complexity of CAFCM is the same as FCM
(i.e., O((n+ p)k) [66]).

The time complexity is empirically estimated via non-
negative least-squares regression using the numbers of iterations
on the 18 datasets

min
w

||Cw − T ||22
s.t.w ≥ 0,

Fig. 7. Descending objective function values of f(Θ) in the annealing loop
of CAFCM (Steps 2–33) on the six datasets. (a) NCI9 (N = 2 and M = 10).
(b) WarpPIE10P (N = 2 and M = 5). (c) WineQuality-White (N = 2 and M
= 15). (d) PageBlocks (N = 2 and M = 5). (e) Texture (N = 3 and M = 15).
(f) Optidigits (N = 2 and M = 5).

Fig. 8. Counts of the best and best plus second-best index mean values using
CAFCM and the thirteen baselines.

where w ∈ �38 is the weight vector of the terms, T ∈ �18 is
the vector of iteration counts, and C ∈ �18×38 is the matrix
of 38 combinations of polynomials and logarithms of n, m,
and p. Table S-VIII in the Supplementary Materials lists the 38
combinations of polynomials and logarithms of n, m, and p,
and their estimated coefficients. By neglecting the terms with
their coefficients w smaller than 0.0001, the resulting estimate
is 2 288 239 k2np+ 351 783 k2np log(p). As the second term is
of higher order, the estimated time complexity of CAFCM is

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on March 01,2024 at 03:42:48 UTC from IEEE Xplore.  Restrictions apply. 



LI AND WANG: FROM SOFT CLUSTERING TO HARD CLUSTERING: A COLLABORATIVE ANNEALING FUZZY c-MEANS ALGORITHM 1193

O(k2np log(p)). As the time complexity of FCM is O(k2np)
per iteration [66], it is log(p) times that of FCM.

V. CONCLUSION

In this paper, a collaborative annealing fuzzy c-means clus-
tering algorithm is proposed. The experimental results on eight
datasets demonstrate that the proposed algorithm with only two
or three modules statistically outperforms thirteen competing al-
gorithms in terms of many cluster validity indices. The proposed
method achieves superior performance, owing to the adoption of
the annealing procedure to phase out fuzziness, as well as collab-
orative modules to maximize clustering quality and eliminate the
influence of initial solutions on clustering performance. Further
research may include improving the efficiency of the proposed
method, extending it for robust clustering to cluster data in the
presence of noises or outliers, extending it for semisupervised
clustering to leverage information from labeled and unlabeled
data, extending it for multiview clustering to take into account
multiple perspectives or representations of data, and applying it
to specific problems in science and engineering.
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