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Abstract— This paper addresses capacitated clustering based
on majorization-minimization and collaborative neurodynamic
optimization (CNO). Capacitated clustering is formulated as
a combinatorial optimization problem. Its objective function
consists of fractional terms with intra-cluster similarities in their
numerators and cluster cardinalities in their denominators as
normalized cluster compactness measures. To obviate the diffi-
culty in optimizing the objective function with factional terms,
the combinatorial optimization problem is reformulated as an
iteratively reweighted quadratic unconstrained binary optimiza-
tion problem with a surrogate function and a penalty function in
a majorization-minimization framework. A clustering algorithm
is developed based on CNO for solving the reformulated problem.
It employs multiple Boltzmann machines operating concurrently
for local searches and a particle swarm optimization rule
for repositioning neuronal states upon their local convergence.
Experimental results on ten benchmark datasets are elaborated
to demonstrate the superior clustering performance of the pro-
posed approaches against seven baseline algorithms in terms of
21 internal cluster validity criteria.

Index Terms— Capacitated clustering, collaborative neuro-
dynamic optimization (CNO), iteratively reweighted optimiza-
tion, majorization-minimization, quadratic unconstrained binary
optimization.

I. INTRODUCTION

CLUSTERING is one of the most fundamental means of
data processing. It is to find a set of clusters in unlabeled

data. In many applications, some prior information on the clus-
ters is available in the form of constraints or partially labeled
data. As a basic form of semi-supervised learning, constrained
clustering incorporates available prior information/knowledge
into clustering. Clustering performance can be boosted by
leveraging the constraints that confine the search space. Sev-
eral types of constraints are utilized in constrained clustering:
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cluster-level constraints, such as cardinality constraints [1],
[2], [3], [4], [5], [6], [7], [8] and capacity constraints [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], instance-level constraints [27],
such as must-link and cannot-link constraints [28], and rank
constraint [29].

Capacitated clustering is an important type of constrained
clustering. It arises in many applications, including vehicle
routing [30], [31], [32], very large-scale integrated circuit
design [33], mail delivery [34], sibling reconstruction [35],
mobility network handover minimization [20], [36], facility
layout [37], [38], reviewer groups construction [39], wireless
and wired network integration [40], and stock market index
tracking [41].

In the literature, capacitated clustering is commonly for-
mulated as a combinatorial optimization problem [9]. In the
existing problem formulation, the objective function is com-
posed of multiple functional terms, and each term sums the
dissimilarity coefficients (e.g., distances) between every pair of
data in a cluster to quantify the within-cluster compactness [9],
[11], [12], [16], [17], [19], [20], [21], [23], [24], [25], [26].
Existing capacitated clustering methods can be classified into
two major categories: mathematical programming methods and
heuristic or meta-heuristic methods. Specifically, mathematical
programming methods include the branch and cut method [19],
the Lagrangian relaxation method [17], etc. In view that most
combinatorial optimization problems are NP-hard [42], heuris-
tic and meta-heuristic methods are widely used, including
scatter search [12], tabu search (TS) [18], variable neighbor-
hood search [25], neighborhood decomposition-driven variable
neighborhood search (NDVNS) [26], iterated variable neigh-
borhood search (IVNS) [21], greedy random adaptive search
procedure and adaptive memory programming [11], reactive
greedy randomized adaptive search procedure with path relink-
ing [16], TS with variable neighborhood search [20], greedy
randomized adaptive search procedure with TS [20], greedy
randomized adaptive search procedure with variable neigh-
borhood search [20], general variable neighborhood search
(GVNS) [25], skewed GVNS (SGVNS) [25], etc. Although
heuristic and meta-heuristic methods can often find good solu-
tions, the solution quality varies without guaranteeing global
optimality.
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Over the last few decades, neurodynamic optimization
approaches emerged as computationally intelligent optimiz-
ers based on recurrent neural networks for solving various
optimization problems, such as combinatorial optimization
problems [43]. It is very difficult, if not impossible, for an
individual recurrent neural network to solve a combinatorial
optimization problem, as it may easily get stuck in a local min-
imum. As such, more than one neurodynamic model is needed
to work collaboratively. In recent years, a hybrid intelligence
framework called collaborative neurodynamic optimization
(CNO) has been developed based on multiple neurodynamic
models coordinated by using meta-heuristics. The multiple
neurodynamic models operate concurrently for scattered local
searches, and their initial states are reinitialized repeatedly
by using a meta-heuristic rule for repositioning the searches.
It integrates the scatter search capability of multiple neuro-
dynamic models together with the global search capability of
meta-heuristics. It is proven that CNO approaches are almost
surely convergent (i.e., with probability one) to the global
optimal solutions of optimization problems [44], [45], [46],
[47], [48].

In this paper, we first propose an objective function with
multiple functional terms normalized by the cluster sizes
to measure the within-cluster compactness. Next, we for-
mulate capacitated clustering as an iteratively reweighted
quadratic unconstrained binary optimization problem with a
surrogate function and a penalty function in a majorization-
minimization framework. We develop a CNO-driven capaci-
tated clustering algorithm based on a population of Boltzmann
machines (BMs) with momentum terms for solving the refor-
mulated problem. The novelties and contributions of this work
are summarized as follows.

1) The reformulated objective function with the total
within-cluster dissimilarity of every cluster normalized
by its cluster cardinality is able to characterize the
cluster compactness naturally, independent of cluster
sizes.

2) The iteratively reweighted quadratic unconstrained
binary optimization problem reformulation with a
surrogate function enables avoiding the direct use
of the reformulated objective function with fac-
tional terms while keeping their cluster normalization
effect.

3) The CNO-driven clustering algorithm with a pop-
ulation of BMs operating in parallel fully utilizes
the hill-climbing capability of BMs in scattered
searches.

4) Extensive experimental results on ten benchmark
datasets show that the CNO-driven clustering algorithm
statistically outperforms seven prevailing baselines in
most internal cluster validity indices.

The remaining paper is arranged as follows. In Section II,
background knowledge on neurodynamic optimization to be
used in Section IV is introduced. In Section III, capaci-
tated clustering is reformulated as an iteratively reweighted
quadratic unconstrained binary optimization problem. In
Section IV, a CNO-driven capacitated clustering algorithm

is delineated. In Section V, experimental results are dis-
cussed in detail. In Section VI, concluding remarks are
given.

II. BACKGROUND KNOWLEDGE

A. Neurodynamic Optimization Models

1) Discrete Hopfield Network: The discrete Hopfield net-
work (DHN) is an exemplar of recurrent neural networks
characterized by its binary or bipolar states and hard-limiter
activation function operating in discrete time [49]�

u(t + 1) = W x(t) − θ

x(t) = σ(u(t))
(1)

where u ∈ Rn is the net-input vector, x ∈ Rn is the
state vector, W ∈ R

n×n is the connection weight matrix,
θ ∈ R

n is the threshold vector, and σ(·) is a vector-
valued hard-limiter activation function defined elementwise as
follows:

σ(ui ) =
�

0, if ui (t) ≤ 0

1, if ui (t) > 0.

It is shown in [49] that the DHN in (1) is completely stable;
i.e., the state of the DHN is convergent to an equilibrium
from any initial state, and if the connection weight matrix
is symmetric (i.e., W = W T ), the main diagonal elements
of W are zero (i.e., wii = 0, ∀i ), and the activation takes
place asynchronously. It is also shown in [49] that the DHN
is convergent to a local minimum of the following binary
optimization problem:

min−1

2
x T W x + θT x s.t. x ∈ {0, 1}n. (2)

It means that an equilibrium x̄ is a local optimum of the
optimization problem earlier. As the right-hand side of (1) is
equal to the negative gradient of the objective function to be
minimized, the DHN neurodynamics forms a gradient flow
moving among vertices of the unit hypercube coordinatewise.
Note that the binary states of the DHN depend exclusively
on the sign of the negative gradient of the objective function
without any historical effect.

If W in the quadratic term of (2) is asymmetric in a
given problem, its symmetry can be equivalently realized
by replacing it with (W + W T )/2. The zero diagonal ele-
ments of W can equivalently realized by adding a linear
term diag(w11, . . . , wnn)x , in view that x2

i = xi for i =
1, 2, . . . , n due to the binary nature of the state variable
xi ∈ {0, 1}.

As a variant of the DHN, a DHN with a momentum term
(DHNm) [50] is developed as follows:�

u(t + 1) = u(t)+W x(t) − θ

x(t) = σ(u(t))
(3)

where u(0) = 0. With the addition of the momentum term
u(t) in the DHN dynamic equation, the DHNm in (3) takes
its historical effect into account and enriches its dynamic
behaviors. It is shown that all neuronal states in the DHNm
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in (3) can be activated synchronously and are convergent to
local or near optima [51], [52]. The DHNm is widely used
in many applications, such as graph planarization [50], inde-
pendent set maximization [53], checkerboard tiling [54], data
sorting [55], map coloring [51], string search [56], channel
assignment in cellular radio networks [57], magnetic resonance
image segmentation [58], bipartite subgraph matching [59],
broadcast scheduling [60], facility layout [61], via minimiza-
tion [62], programmable logic array folding [63], microcode
optimization [64], etc.

2) Boltzmann Machine: The BM [65] is a stochastic ver-
sion of the DHN. For searching and optimization, it is
a parallel realization of simulated annealing [66] minimiz-
ing (2). Unlike the Hopfield network, the i th neuron in
a BM is activated according to the probability defined as
follows: ⎧⎪⎨

⎪⎩
p(xi(t) = 1) = 1

1+ exp
�
− ui (t)

T (t)

�
p(xi(t) = 0) = 1− p(xi(t) = 1)

(4)

where ui is defined as in (1), T is the temperature parameter
decreasing over time. An exponential multiplicative cooling
schedule of the temperature is defined in [67]

T (t) = T0α
t (5)

where T0 is the initial temperature and α ∈ (0, 1) is
a cooling rate parameter. It is known that a BM with a
sufficiently large initial temperature and sufficiently long
cooling schedule is almost surely convergent to a global
optimal solution of a given combinatorial optimization
problem [68], [69].

The BM is applicable to a wide range of combinato-
rial optimization problems, including the independent set
problem [68], the max-cut problem [68], the graph col-
oring problem [68], the traveling salesman problem [69],
the matching problem [66], and the graph partitioning
problem [66].

B. Collaborative Neurodynamic Optimization

CNO approaches are developed for solving various com-
plex optimization problems, such as distributed optimization
[70], [71], global optimization [44], [45], [46], [47], mul-
tiobjective optimization [71], [72], and combinatorial and
mixed-integer optimization [46], [48]. They inherit the
almost-sure convergence property proven theoretically in [46].
CNO is customized as computationally intelligent optimizers
in various applications, such as nonnegative matrix factoriza-
tion [73], vehicle-task assignment [74], [75], stock portfolio
selection [76], spiking neural network regularization [77], and
hash bit selection [78].

The neurodynamic models used in existing CNO approaches
include projection neural networks [72], [73], [74], [76], [79]
and DHNs (1) [75], [78]. Almost all of the CNO algorithms
use a particle swarm optimization rule to reposition the neural

searches. The standard rule is defined in [80]

vi (t + 1) = c0vi (t)+ c1r1
	
x∗i (t)− xi(t)



+ c2r2

	
x∗(t)− xi (t)



if (r3 < S(vid(t))), then xid(t) = 1, else xid(t) = 0

(6)

where xi(t) is the position of the i th particle at the tth iter-
ation, vi (t) is the velocity of the i th particle, x∗i (t) is the
present best position in terms of a given objective func-
tion for the i th particle, x∗(t) is the best position of the
population, c0 is a positive inertia parameter, c1 and c2
are two positive weighting parameters, and r1 and r2 and
r3 are random values in [0, 1], S(·) is a sigmoid limiting
transformation.

III. PROBLEM FORMULATIONS

Suppose that n data vectors with m features v i ∈ �m

are to be clustered into p mutually exclusive clusters. The
capacitated clustering problem is commonly formulated as
follows [9], [11], [12], [16], [17], [19], [20], [21], [23], [24],
[25], [26]:

min
x

p�
l=1

n�
i=1

�
j<i

di j xil x j l

s.t.
p�

l=1

xil = 1, i = 1, 2, . . . , n

n�
i=1

ail xil ≤ bl , l = 1, 2, . . . , p

xil ∈ {0, 1}, i = 1, 2, . . . , n; l = 1, 2, . . . , p (7)

where xil is the binary decision variable defined as xil = 1 if
datum i is assigned to cluster l or xil = 0, otherwise, di j is
the dissimilarity coefficient (e.g., distance) between samples i
and j , ail is a capacity coefficient for datum i and cluster l,
and bl is the capacity of cluster l. It contains np binary
decision variables and n + p linear constraints. The first set
of constraints ensures that each datum belongs to exactly
one cluster. The second set contains capacity constraints that
restrict the cluster size.

Different from k-means and k-medoid clustering, the objec-
tive function in the quadratic assignment problem formulation
is centerless without the need for selecting cluster represen-
tatives (e.g., centroids or medoids). Instead, the clustering
results depend mutually on the sums of intracluster dissim-
ilarity coefficients in all clusters. In other words, the objec-
tive function value to be minimized is the total intracluster
dissimilarity.

As aforementioned in Section I, there is a shortcom-
ing in the objective function in problem (7). As the total
within-cluster dissimilarity is quadratically proportional to the
cluster size, it would result in unnaturally balanced clusters.
To illustrate this point, consider a simple case to cluster an
even number of data into two clusters (i.e., n is even and
p = 2). If the two clusters contain equal numbers of data
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TABLE I

INFORMATION ON THE INTERNAL CLUSTER VALIDITY INDICES, WHERE ↑ AND ↓ INDICATE THEIR DESIRABILITY

Fig. 1. Illustration of the clustering results based on the distance measures
with and without normalization.

(i.e., n1 = n2 = n/2, where nl denotes the number of data
in cluster l), then the total number of weighted connections is
up to n2/2. Now suppose that cluster 1 contains q more data
than cluster 2. Then, n1 = (n+ q)/2, n2 = (n− q)/2, and the
total number of weighted connections increases to (n2+q2)/2

TABLE II

PARAMETERS OF THE DATASETS (I.E., n, m, p, AND b), PROBLEM (15)
(I.E., PENALTY PARAMETER ρ), BMM COOLING SCHEDULE (5)

(I.E., T0), AND CNO-CC (I.E., M AND N )
USED IN THE EXPERIMENTS

(i.e., q2/2 more). As a result, the clustering results based on
the formulation in (7) tend to be unnaturally balanced in terms
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TABLE III

MEAN VALUES AND STANDARD DEVIATIONS OF 21 INTERNAL CLUSTER VALIDITY CRITERIA RESULTING FROM CNO-CC AND SEVEN BASELINES ON
SJC1 (n = 100, p = 10, AND b = 720), SJC2 (n = 200, p = 15, AND b = 840), SJC3a (n = 300, p = 25, AND b = 740),

AND SJC3b (n = 300, p = 20, AND b = 740)

of resulting cluster sizes. Consider a simple example illustrated
in Fig. 1, where five samples are to be partitioned into two
clusters. If the total within-cluster Euclidean distance is used
as the objective function, then the total within-cluster distance
of the resulting clusters surrounded by the two ellipses is
5+√2 (≈6.414), whereas more natural clusters surrounded by

the two circles result in a bigger total within-cluster distance
(i.e., 4+ 2

√
2 ≈ 6.828).

The unnatural clustering result is because the sum of
dissimilarity coefficients in each cluster is not normalized
by the size of the cluster, and the terms in the objective
function (i.e., the numbers of intra-cluster weighted con-
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TABLE IV

MEAN VALUES AND STANDARD DEVIATIONS OF 21 INTERNAL CLUSTER VALIDITY CRITERIA RESULTING FROM CNO-CC AND SEVEN BASELINES ON
SJC4a (n = 402, p = 30, AND b = 840), SJC4b (n = 402, p = 40, AND b = 840), DONI1 (n = 1000, p = 6,

AND b = 200), AND U724_010 (n = 724, p = 10, AND b = 4175)

nections in a fully connected data graph) are quadratically
proportional to the cluster sizes. To remedy the shortcom-
ing, the quadratic assignment problem formulation can be
normalized by using cluster cardinality. The normalized total
within-cluster distance for the circled clusters in Fig. 1 is
1 + √2/2 (≈1.707), much smaller than that of the unnat-
ural clusters surrounded by the ellipses ((2 + √2)/3 + 3/2
≈ 2.638).

Let nl be the number of data points in cluster l
for l = 1, 2, . . . , p. As such, the quadratic assign-
ment problem for capacitated clustering is reformulated as

follows:

min
x

p�
l=1

�n
i=1

�
j<i di j xil x j l�n
i=1 xil

s.t.
p�

l=1

xil = 1, i = 1, 2, . . . , n

n�
i=1

ail xil ≤ bl, l = 1, 2, . . . , p

xil ∈ {0, 1}, i = 1, 2, . . . , n; l = 1, 2, . . . , p. (8)
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TABLE V

MEAN VALUES AND STANDARD DEVIATIONS OF 21 INTERNAL CLUSTER VALIDITY CRITERIA RESULTING FROM CNO-CC AND SEVEN BASELINES ON
RL1304_010 (n = 1304, p = 10, AND b = 7237) AND DONI2 (n = 2000, p = 6, AND b = 400)

Note that
�n

i=1 xil = nl . In addition, if di j = d j i and dii = 0,
then

�n
i=1

�
j<i di j xil x j l =�n

i=1
�n

j=1 di j xil x j l/2.
If di j = �v i − v j�, then we have

p�
l=1

�n
i=1

�n
j=1 di j xil x j l�n
j=1 x jl

=
p�

l=1

�n
i=1

�n
j=1

v i − v j

xil x j l�n
j=1 x jl

≥
p�

l=1

�n
i=1

�n
j=1

�
v i − v j

�
x jl

 xil�n
j=1 x jl

=
p�

l=1

n�
i=1


�n

j=1

�
v i − v j

�
x jl�n

j=1 x jl

 xil

=
p�

l=1

n�
i=1

v i −
�n

j=1 x jlv j�n
j=1 x jl

 xil

where
�n

j=1 x jlv j/
�n

j=1 x jl is the centroid of cluster l.
It implies that the objective function (8) is an upper
bounding function of the objective function in k-means
clustering. Nevertheless, the dissimilarity coefficient di j

in (8) is more general beyond the definition of any
norm.

In view that the minimization of a fractional objec-
tive function in (8) can be carried out via the mini-
mization of its numerator and the maximization of its
denomination simultaneously, problem (8) is reformulated
as the following mixed-integer quadratic programming

problem:

min
x,λ

p�
l=1

n�
i=1

⎛
⎝�

j<i

di j xil x j l − λl xil

⎞
⎠

s.t.
p�

l=1

xil = 1, i = 1, 2, . . . , n

n�
i=1

ail xil ≤ bl, l = 1, 2, . . . , p

xil ∈ {0, 1}, i = 1, 2, . . . , n; l = 1, 2, . . . , p (9)

where λl is a positive of weight for l = 1, 2, . . . , p. Let φλ(X)
denote the objective function to be minimized in problem (9)
hereafter.

For given nonzero initial solution x(0), problem (9) can be
solved with iterative weights as follows: For t = 0, 1, . . . ;

λl(t) =
�n

i=1
�

j<i di j xil (t)x jl(t)�n
i=1 xil (t)

, l = 1, 2, . . . , p

(10a)

x(t + 1) = arg min
x∈X

p�
l=1

n�
i=1

⎛
⎝�

j<i

di j xil x j l − λl (t)xil

⎞
⎠ (10b)

where X = {x ∈ {0, 1}n×p|�p
l=1 xil = 1,

�n
i=1 ail xil ≤

bl, i = 1, 2, . . . , n; l = 1, 2, . . . , p}. Problem (9) can then
be solved as an iteratively reweighted binary quadratic pro-
gramming problem for given λl (t) (l = 1, 2, . . . , p) updated
iteratively according to (10a). Because of the effect of mini-
mization in (9)

λl(t + 1) ≥ λl(t) =
�n

i=1
�

j<i di j xil (t)x jl(t)�n
i=1 xil(t)

.
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The above-mentioned inequality implies that the objective
function in (9) is a surrogate function in a majorization-
minimization framework [81], [82], [83], [84]. It is proven
that the convergence rate of the weight λ in the iterative
reweighting procedure (10) is quadratic [85].

The capacitated clustering can be further reformulated in
an iteratively reweighted quadratic unconstrained binary opti-
mization problem by introducing a quadratic penalty function
into the objective function as an alternative to imposing con-
straints. The terms in the penalty function are chosen so that
the influence of the original constraints on the solution process
can alternatively be enforced by the natural functioning of the
optimizer as it looks for solutions that avoid incurring the
penalties. That is, the penalty terms are formulated so that they
equal zero for feasible solutions and are positive for infeasible
solutions. For a minimization problem, these penalty functions
are added to create an augmented objective function to be
minimized. If all the penalty terms can be driven to zero, the
augmented objective function becomes the original objective
function to be minimized.

To handle the equality constraints in (9), a quadratic penalty
term is defined as follows:

φ1(X) = 1

2

n�
i=1

� p�
l=1

xil − 1

�2

. (11)

In view that xil ∈ {0, 1}, and hence, x2
il = xil , the penalty

term can be equivalently expressed as follows:

φ1(X) = 1

2

n�
i=1

⎛
⎝ p�

l=1

xil − 2
p�

l=1

�
j<l

xi j xil − 1

⎞
⎠. (12)

A penalty term for the inequality constraint in (13) by using
rectified activation function is defined as

φ2(X) = 1

2

p�
l=1

�
max

�
0,

n�
i=1

ail xil − bl

��2

. (13)

With the two penalty functional terms and the quadratic
objective function to be minimized, a penalty function and
a penalized or augmented objective function are defined as
follows:

φ(X) = φ1(X)+ φ2(X) (14)

fλ(X) = φλ(X)+ ρφ(X) (15)

where ρ is a positive penalty parameter, and X ∈ {0, 1}n×p.
Based on the penalty function (14) and penalized objective

function in (15), problem (9) is reformulated as the following
quadratic unconstrained binary optimization problem:

min
X

fλ(X), s.t. X ∈ {0, 1}n×p. (16)

It is known that problems (16) and (9) are equivalent in
terms of their optimal solutions if the penalty parameter is
sufficiently large [86].

IV. ALGORITHM DESCRIPTION

Based on the formulated problem in (16), a CNO-
driven capacitated clustering algorithm termed CNO-CC is
developed.

In analogy to DHNm, a BM with a momentum term (BMm)
is defined as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(t + 1) = u(t)+W x(t) − θ

p(xi(t) = 1) = 1

1+ exp
�
− ui (t)

T

�
p(xi(t) = 0) = 1− p(xi(t) = 1).

(17)

In the CNO-CC algorithm, a population of BMms in (17)
are employed for distributed local search, and the PSO rule
in (6) is used to repetitively update DHN or BM neuronal
states upon their local convergence to escape from local optima
and move toward global optimal solutions.

Algorithm 1 CNO-CC
Input: Dissimilarity coefficient matrix D, DHN or BM

population size N , termination criterion M , PSO
parameters c0, c1, and c2, initial temperature
parameter T0.

1 For i = 1, 2, . . . , N , generate random initial neuronal
state matrices Xi (0) ∈ {0, 1}n×p , PSO velocity matrices
Vi ∈ [−1, 1]n×p,; set initial group-best matrix and initial
individual-best matrices for the i th BM X∗ = X∗i = 0.
Set iteration counter t = 0 and termination counter � = 0;

2 while � < M do
3 for i = 1 to N do
4 f lgi = 0;
5 while f lgi = 0 do
6 Update X (t)i according to (1) for DHN or (4)

for BM;
7 if Xi (t) = Xi (t + 1) then
8 Compute λl

i (l = 1, . . . , p) according
to (10a);

9 f lgi = 1;
10 end
11 t ← t + 1;
12 end
13 if fρ(Xi (t)) < fρ(X∗i ) then
14 X∗i ← Xi (t);
15 end
16 end
17 if min{ fλ(X∗1), . . . , fλ(X∗N )} < fλ(X∗) then
18 X∗ ← arg min{ fλ(X∗1), . . . , fλ(X∗N )};
19 �← 0;
20 else
21 �← �+ 1;
22 end
23 for i = 1 to N do
24 Update Xi (t + 1) according to (6);
25 end
26 end

Output: X∗.

Algorithm 1 describes the CNO-CC algorithm. Steps 3–12
are to obtain the equilibria of BMms for scatter local searches.
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Fig. 2. Monte Carlo test results of the CNO-CC algorithm with several values of M and N on the ten datasets. (a) SJC1. (b) SJC2. (c) SJC3a. (d) SJC3b.
(e) SJC4a. (f) SJC4b. (g) U724_010. (h) Doni1.

Steps 13–14 and 17–18 are to update individual and population
best solutions, respectively. Steps 23–25 are to reposition the
neuronal states using the PSO rule.

In the CNO-CC algorithm, there are two important hyper-
parameters: the BMm population size denoted by N and the
minimum number of consecutive iterations without further
improvement denoted by M as the termination criterion. These

two hyperparameters usually need to be determined in an ad
hoc manner, as they depend on the inherent complexity of
the problem under study and the desired spatial and temporal
complexities of the solution method. In general, the larger the
population size N is, the faster CNO-CC converges to optimal
or acceptable high-quality solutions. Therefore, it is a trade-off
between the spatial and temporal complexities. Due to the
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Fig. 3. Snapshots of objective function value and penalty function value of the CNO-CC algorithm. (a) SJC1. (b) SJC2. (c) SJC3a. (d) SJC3b. (e) SJC4a.
(f) SJC4b. (g) U724_010. (h) Doni1. (i) Rl1304_010. (j) Doni2.

stochastic nature of PSO-based reinitialization for multistart
scatter search, M needs to be set with a fair value to reach
the theoretically proven almost-sure convergence.

V. EXPERIMENTAL RESULTS

A. Experiment Setups

As the evaluation of clustering results is subjective, many
cluster validity criteria are used to evaluate the multifaced
goodness of clustering results. Internal cluster validity criteria
are independent of the specific use of similarity or dissimilarity
coefficients, whereas external cluster validity criteria depend

on the similarity or dissimilarity coefficients used as well as
labels. In this study, 21 label-free internal cluster validity
criteria in Table I are used for evaluating the clustering
performance.

The experiments are based on ten benchmark datasets with
given data weights and cluster capacities (i.e., ail and bl

in (7)), exclusively used for capacitated clustering: SJC1,
SJC2, SJC3a, SJC3b, SJC4a, SJC4b1 (used in [12], [13], [14],
[15], [22], [87], [88], [89], [90], [91], and [92]), U724_0102

1http://www.lac.inpe.br/~lorena/instancias.html
2https://github.com/emuritiba/cccp
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Fig. 4. Convergent behavior of the CNO-CC algorithm on the ten datasets with M = 1000 and N = 32. (a) SJC1. (b) SJC2. (c) SJC3a. (d) SJC3b. (e) SJC4a.
(f) SJC4b. (g) U724_010. (h) Doni1. (i) Rl1304_010. (j) Doni2.

Fig. 5. Resulting clusters using the CNO-CC algorithm. (a) SJC1. (b) SJC2. (c) SJC3a. (d) SJC3b. (e) SJC4a. (f) SJC4b. (g) U724_010. (h) Doni1.
(i) Rl1304_010. (j) Doni2.

(used in [22], [89], [91], and [92]), Doni1, Doni21 (used in
[22], [87], [88], [90], [91], and [92] ), and Rl1304_0102 (used
in [22], [89], and [91]), with their major parameters listed in
Table II and the coordinates of the data points available for
evaluating the internal validity criteria of clustering results.
In this study, the Euclidean distance is used to represent the
dissimilarity between data.

The proposed CNO-CC algorithm is compared with
seven prevailing capacitated clustering algorithms: TS [20],
greedy randomized adaptive search procedure with variable
neighborhood descent (GRASP-VND) [20], GRASP-VND
and TS (GRASP-VND-TS) [20], IVNS [21], GVNS [25],
SGVNS [25], and NDVNS [26] algorithms. The code of
CNO-CC is publicly accessible at Github.3 The codes of the
GRASP-VND, TS, GRASP-VND-TS, and IVNS algorithms
are obtained following a link in [21]. The codes of GVNS
and SGVNS are from http://www.mi.sanu.ac.rs/~nenad/ccp/
maintained by Brimberg et al. [25]. The codes of NDVNS are
obtained following a link in [26].

3https://github.com/HongzongLI-CS/CNO-CC-Github

B. Parameters Selection

The values of two hyperparameters N (population size)
and M (termination criteria) in Algorithm 1 are set based on
20-run Monte Carlo tests with random initial states on the ten
datasets. Fig. 2 depicts the box-plots of the Monte Carlo test
results obtained using the CNO-CC algorithm over 20 runs
with different initial states on the ten datasets, where a center
bar in a box marks the median, the top and bottom of the
box denote the upper quartile qn(0.75) and the lower quartile
qn(0.25), and the whiskers denote the highest or lowest values.
As shown in Fig. 2, the objective function values reach their
minimum in most runs with M = 500 and N = 8 on SJC1,
M = 500 and N = 8 on SJC2, M = 500 and N = 16 on
SJC3a, M = 900 and N = 8 on SJC3b, M = 800 and N = 32
on SJC4a, M = 500 and N = 16 on SJC4b, M = 600 and
N = 32 on U724_010, and M = 800 and N = 16 on Doni1.
Table II lists the values of the hyperparameters as well as
other parameters used in the experiments. In the BMm, the
cooling rate α = 0.2. In the PSO update rule (6), c0 = 1 and
c1 = c2 = 2.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 08,2023 at 07:26:15 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

C. Neurodynamic Behaviors

Fig. 3 depicts ten snapshots of the convergent behaviors of
the objective function f (x) in (9) and the penalty function
p(x) in (14), resulting from an individual BMm in the
inner-loop of CNO-CC (Step 6) on the ten datasets. The
snapshots in Fig. 3 show that the objective function values
increase because the solution does not satisfy the constraints,
as shown in the penalty function values on the right-hand
side. The objective functions reach stationary points, and
the penalty function decreases to zero (i.e., converges to a
feasible solution) within 134 iterations. Fig. 4 depicts the
convergent behaviors of φλ(X) the CNO-CC algorithm on the
ten datasets, where the red envelopes depict the augmented
objective functions of group-best solutions X∗. It shows
that the augmented objective function values monotonically
decrease, and CNO-CC converges within 600 iterations.

D. Performance Comparisons

To make fair comparisons, the same stop criterion is used
among the competing algorithms; i.e., M in CNO-CC is set
according to the stop criterion. Fig. 5 shows the resulting
clusters using the CNO-CC algorithm on the ten datasets.
Note that the shapes of some clusters are irregular due to
the existence of capacity constraints. Tables III–V records the
mean values and standard deviations of 21 internal cluster
validity criteria resulting from the seven competing algorithms
over 20 runs with random initialization on the ten datasets. The
results show that the CNO-CC algorithm achieves the best
results among the ten methods in 126 out of the 168 cases
(75%) in terms of the mean values.

VI. CONCLUSION

This paper presents a capacitated clustering algorithm based
on CNO. The proposed objective function with fractional
functional terms empowers to measure cluster compactness
naturally. The surrogate function used to represent the objec-
tive function leads to the iteratively reweighted quadratic
unconstrained binary optimization problem formulation in a
majorization-minimization framework, facilitating the subse-
quent development of the clustering algorithm. The proposed
capacitated clustering algorithm leverages the hill-climbing
local search capability of BMs in scattered searches. The
proposed algorithm statistically outperforms the baselines
owing to the combined use of a more reasonable objec-
tive function for measuring cluster compactness and a more
effective optimizer driven by collaborative neurodynamics.
Further investigations may aim at the efficiency and scala-
bility improvements of the neurodynamics-driven capacitated
clustering algorithm. Further investigations may also include
the robustness analysis of neurodynamics-driven constrained
clustering as in noise-tolerant neural networks [112], [113].
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