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Abstract—The formation of part families and their
corresponding machine cells is a critical phase in the
design of a cellular manufacturing system. This paper presents
a constrained binary matrix factorization approach to machine-
cell and part-family formation. A constrained binary matrix
factorization problem is formulated for machine-cell and
part-family formation to minimize the number of exceptional
elements. The constrained binary matrix factorization is further
reformulated to a quadratic unconstrained binary optimization
problem by reducing the quartic objective function of the binary
matrix factorization problem to a quadratic one and penalizing
the violation of constraints. A neurodynamics-driven algorithm
is proposed to solve the reformulated quadratic problem
by leveraging several Boltzmann machines for searching
solutions and a particle swarm optimization rule to reinitialize
the neuronal states upon their local convergence to escape
from local solutions and move toward global optimal ones.
Experimental results on eighteen benchmark datasets are
presented to showcase the superior performance of the proposed
approach in terms of four criteria.

Index Terms—Cellular manufacturing; machine-cell and
part-family formation; binary matrix factorization; quadratic
unconstrained binary optimization (QUBO); collaborative
neurodynamic optimization; Boltzmann machine.

I. INTRODUCTION

In manufacturing industries, the design and optimization
of manufacturing systems, such as cellular manufacturing
systems, plays a critical role in improving productivity and
minimizing costs [1]-[3]. The formation of machine cells and
part families is an essential undertaking in the development
of cellular manufacturing systems [4]-[18]. It involves two
critical tasks: forming part families and forming machine cells
[5]. Part-family formation is concerned with grouping parts
with similar characteristics and processing requirements into
families. Machine-cell formation involves grouping machines
into cells based on their capabilities and compatibility with
part families. In a cellular manufacturing system, each
part family is processed in its corresponding machine cell
to minimize material handling costs and maximize the
productivity of the manufacturing system. Fig. 1 illustrates a
conceptual diagram of machine-cell and part-family formation.
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Various machines (e.g., lathes, millers, drills, grinders) and
parts initially associated with processing requirements. The
objective is to simultaneously partition machines into machine
cells and parts into part families such that each part family
can be processed predominantly within its corresponding
machine cell, minimizing exceptional elements and improving
manufacturing efficiency. To manufacture a batch of products
based on customers’ orders, a production planner needs to
provide a solution to form machine cells and form part families
for a cellular manufacturing system. Once the customers’
demands change, the production planner must provide new
solutions to meet the dynamic manufacturing environments.
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Fig. 1: Conceptual illustration of machine-cell and part-family
formation in cellular manufacturing.

In the literature, there are three procedures of machine-
cell and part-family formation: forming machine cells first
and deducing part families, forming part families first and
deducing machine cells, or forming machine cells and part
families simultaneously. Over the past three decades, many
methods have been developed for machine-cell and part-family
formation, and they are mainly divided into two classes:
clustering-based and optimization-based methods. Clustering-
based methods include the rank-order clustering algorithm
[4], the linear assignment clustering algorithm [6], [7], and
the hierarchical clustering algorithm [16]. The clustering
problem is known to be NP-complete. Optimization-based
methods are subdivided into exact methods, heuristic methods,
meta-heuristic methods, and neural network-based methods.
Exact methods include the branch and cut algorithm [9],
the primal and dual simplex algorithm [11], and the branch-
and-bound algorithm [14]. Heuristic methods include the



fuzzy goal programming algorithm [8], the heuristic part
assignment algorithm [12], the multi-choice goal programming
algorithm [13], and the p-median model-based algorithm [15].
Evolutionary methods include the ant colony optimization
algorithm [10], the genetic algorithm [17], and the bacterial
foraging algorithm [18]. Neural network methods include
the ART1 [19]-[21]. In recent decades, artificial intelligence
became a core enabler of intelligent manufacturing systems
[22].

In his seminal papers [23], [24], John Hopfield foresaw that
recurrent neural networks can collectively serve as powerful
computational models. Specifically, the Hopfield networks
are developed for linear programming and combinatorial
optimization [24], [25]. Ever since then, a variety of
neurodynamic optimization models have been developed
for solving numerous optimization problems [26]-[31].
Despite the progress, it is acknowledged that an individual
neurodynamic model faces challenges in effectively addressing
combinatorial optimization problems because gradient-driven
neurodynamic models are prone to be trapped in local
minima. In recent years, the collaborative neurodynamic
optimization (CNO) approach has emerged as a hybrid
intelligence framework integrating neurodynamic optimization
with evolutionary optimization methods to address diverse
and intricate challenges in optimization. As demonstrated in
[32], [33], CNO approaches are almost surely convergent
to the global optimal solutions of optimization problems.
CNO-driven computationally intelligent problem solvers
appear in many applications, including nonnegative matrix
factorization [34], Boolean matrix factorization [35], bicriteria
sparse nonnegative matrix factorization [36], binary matrix
factorization [37], etc. In addition, several CNO approaches
are developed for solving general quadratic unconstrained
binary optimization (QUBO) problems [38] as well as specific
QUBO problems such as vehicle-task assignment [39], hash-
bit selection [40], and capacitated clustering [41].

In this paper, we propose a CNO-driven binary matrix
factorization approach to machine-cell and part-family
formation. We first formulate a constrained binary matrix
factorization problem with a quartic pseudo-Boolean objective
function for machine-cell and part-family formation. We
then prove that the quartic pseudo-Boolean function can
be equivalently reduced to a quadratic one, and it is an
upper bound of the number of exceptional elements in the
given machine-part incident matrix. Next, we reformulate
the problem as a matrix-valued QUBO problem via the
penalization of constraint violation. We develop a CNO-
driven algorithm based on multiple Boltzmann machines with
repeated state reinitialization to solve the reformulated QUBO
problem. The novelties and contributions of this work are
outlined as follows:

i. The proposed constrained binary matrix factorization
approach enables to form of machine cells and part
families simultaneously.

ii. The quartic function of factorization errors is theoretically
proven to be equivalent to a quadratic one as an upper
bound of the number of exceptional elements in the
machine-part incident matrix.

iii. The proposed CNO-driven algorithm for solving the
reformulated problem with the reformulated quadratic
objective function is experimentally demonstrated to
perform statistically better than a CNO-driven algorithm
for binary matrix factorization with the quartic objective
function and the best-known results hitherto in terms of
three performance criteria.

The remaining paper is structured as follows. Section II
introduces essential preliminaries about a problem
statement, performance criteria, and neurodynamic
optimization. Section III discusses the problem formulation
and reformulation. Section IV describes the proposed
neurodynamics-driven algorithm. Section V elaborates on the
experimental results in eighteen instances. Finally, Section VI
provides the concluding remarks.

II. PRELIMINARIES
A. Solution Representation

A machine-part incidence matrix V€ {0,1}"*™
encodes the relationships between machines and parts in a
manufacturing system, where n is the number of machines,
m is the number of parts, and v;; = 1 if part j needs to be
processed by machine ¢, and v;; = 0, otherwise.

Let x;; denote a binary decision variable to encode the
assignment status of machine i to cell k, with x;; = 1 if being
assigned and x;; = 0 otherwise. Similarly, let y; denote a
binary decision variable to encode the assignment status of part
j to family k, with y;; = 1 if being assigned and y;; = 0
otherwise.

Let C, denote the index set of machine cell k, F}, denote the
index set of part family &, and r denote the given number of
machine cells or part families. Based on the encoding scheme
above, machine cells and part family can be encoded using
two indicator matrices X and Y as follows:

11 T12 T1r Y11 Y12 Yim

T21 X22 ccc Tor Y21 Y22 Yom
X=1. . s Y= :

Tnl Tnp2 Tny Yr1  Yr2 Yrm
where

if part j € F;,

if machine ¢ € C;, 1
Yi = 0 otherwise.

1
Tij = )
0 otherwise.

Machine cells and the part families can be decoded from X
and Y as follows:

Ck = {Z|I2k = 1, 1= 1, ...,n},
‘Fk = {]|yk] = 17 j = 17 "')m}’ k = 1’ "'77‘7 (2)

B. Performance Criteria

The performance evaluation for machine-cell and part-
family formation is commonly based on several criteria. For
example, the number of exceptional elements (EE) refers to the
number of parts in part families that need to be processed by
machines outside machine cells associated with corresponding
part families. In a permutated machine-part incidence matrix,



it is the total number of 1’s outside of blocked submatrices.
EE is defined as follows:

n m T
FE= 135 vl — i, )
i=1 j=1k=1
where v;; is the element at the i-th row and the j-th column
of a given machine-part incidence matrix V.
The percentage of exceptional elements (PE) quantifies the
ratio of exceptional elements to unity elements within V' [4]:

EE
PE = ik 4)
where UE denotes the total count of ones in V, ie.,
UE=3"", Z;nzl Vi
Bond energy (BE) is known as the measure of effectiveness
for assessing the compactness of a permuted matrix V' [42]:

n—1 m n m-—1
BE = g E UijUit1,5 + E E Vij0i,j+1- )
i=1 j=1 i=1 j=1

Machine utilization (MU) characterizes the frequency of
visits to machines within cells [43]:

UE — EE
MU = ——, (6)
> k=1 hipr
where hj, and pj represent the number of machines in the k-th
cell and the number of parts in the k-th family, respectively.
Grouping efficiency (GE) is defined as grouping efficiency
[43]:

UE - EE

Zk:1 hipi

EE
+(1—-—w)(1- - ,
( ) ( nm =3 hkpk)

)

where w € [0, 1] is a weighting parameter. Normally w = 0.5.
Note that GE=MU if w = 1.

C. Neurodynamic Optimization

1) Boltzmann Machine: The Boltzmann Machine (BM) is
a type of stochastic neural network where each state x; is
updated based on an acceptance probability as follows [44]:

u(t) = Wa(t) — 6, 3)

1

PO =0 Heetummmy @
where u € R" denotes the net-input vector, z € JR" denotes
the state vector, W € R"*"™ denotes the connection weight
matrix, § € " denotes the threshold vector, and 7'(t)
denotes a positive temperature parameter at t-th iteration,
updated according to T' = Tyn?, where Ty denotes an initial
temperature and 1 € (0, 1) is a cooling factor.

The BM is shown to be convergent to at least a local
minimum of the following QUBO problem [44]:

1
min — 5gcTW:c + 0Tz, s.t. z € {0,1}". (10)
A Boltzmann Machine with a momentum term (BMm) is

expressed in [41] as follows:

u(t+1) =u(t) + Waz(t) — 0, (11a)

l‘l(t) = { (1)7

With the addition of the momentum term w(t) in the BM
dynamic equation, the BMm in (11) takes its historical effect
into account and enriches its dynamic behaviors. It is shown
that all neuronal states in the BMm in (11) can be activated
synchronously and are convergent to local or near optima [41].

2) Collaborative Neurodynamic Optimization: In analogy
with scattered searches in swarm intelligence, a CNO approach
utilizes a population of individual neurodynamic optimization
models to probe local optima. Additionally, it integrates a
meta-heuristic rule, such as particle swarm optimization, to
update initial neuronal states for the escape from local minima
and the exploration of global optima. A mutation operator may
be used to maintain a certain level of the diversity of initial
neuronal states to prevent premature convergence.

Existing collaborative neurodynamic optimization (CNO)
approaches utilize various neurodynamic models, including
projection neural networks (e.g., [45]-[47]), discrete Hopfield
networks [37]-[40], and Boltzmann machines [35], [38].
Almost all of the CNO algorithms [35], [37]-[40] use a
particle swarm optimization rule in [48] as follows:

: 1
if G wmmy > rand,

11b
otherwise. (11b)

Vi(t) = cothi(t — 1) + cir(p] —pi(t — 1))+
cora(p* — pi(t — 1)),
if (rg < S(4i(t))),then p;(t) = 1,else p;(t) =0,

(12a)
(12b)

where p; denotes the present position of the i-th particle, v;
denotes the velocity determining the searching direction, p;
denotes the present best solution of the ¢-th particle, p* denotes
the present best solution of a solution set, ¢y is an inertia
weight, ¢y is a cognitive learning factor, ¢, is a social learning
factor, and 71,79 € [0, 1] are random constants, and S(-) is a
sigmoid limiting transformation.

In a CNO approach, the diversity of initial states is essential
for effective search, often enhanced by mutation operations to
mitigate premature convergence. The diversity of initial states
is quantified as follows:

N
1 .
- (@) _ p*
o(p) Nn;”P Pll2, (13)

where NN is the population size (i.e., the total number of
neurodynamic models), n is the dimension of a solution, p(i)
is the initial states of the ¢-th neurodynamic model, and p* is
the present best solution among the entire population.
Bit-flip mutation, a commonly used mutation operator for
combinatorial optimization [49], is expressed as:

pj = e
j p;

where —p; denotes the negation of p;, x € [0,1] is a random
number, and P, is a preset mutation probability.

CNO approaches based on BMs are developed for
combinatorial optimization, such as capacitated clustering [41]
and quadratic unconstrained binary optimization [38].

if k<P,

14
otherwise, (14)



III. PROBLEM FORMULATION AND REFORMULATION
A. Problem Formulation

Let’s consider the following ideal assignments without
exceptional elements:

o If v;; = 1, then for k£ € {1,...,r}, assign the i-
th machine in C, and assign the j-th part in Fi (ie.,
Tik = Yr; = 1, and x5 = yi; = 0, VI # k). As a result,
> ko1 ikl = 1.

o If v;; = 0, then VE, either machine ¢ is not assigned in
Cy, or part j is not assigned in Fj, (i.e., Ak such that i €
Cr and j € Fy). As aresult, >, | ipyr; = 0.

Combining both cases yields

T
vij =Y Tiklkj, i=1,..m, j=1..m. (15)
k=1

The equality in (15) does not hold, in the presence of
exceptional element(s). It does not hold either if a part in
a family does not need to be processed on every machine in
its corresponding machine cell. In such scenarios, a norm of
XY — V may be used to measure the errors of cell-family
imperfect match.

Based on the discussions above, a constrained binary matrix
factorization problem is formulated for machine-cell and part-
family formation as follows:

: _vI2
min || XY — V]| (16a)

st. Xe, =ep, (16b)

YTe, = em, (16¢)

X €{0,1}™*", Y € {0,1}"*™,  (16d)

where || - || is the Frobenius norm, and e,, = [1,1,...,1]T €

PR" is an n-vector of ones. Constraint (16b) requires the sum
of elements in each row of X to be one to ensure each machine
being assigned to one and only one cell. Constraint (16c)
requires the sum of elements in each column of Y to be one
to ensure each part being assigned to one and only one family.

Consider an incidence matrix V  without exceptional
elements to form four machine cells and part families (i.e.,
r =4) in [50]:

123 45 6 7 8 9 10 11

1 1 1
11 1 1 1
11 1 1 1
1 1 1

12 13 14 15 16 17 18 19 20

1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 1 1 1

OO0 oA WN R

where elements of zeros are left blank, n = 10, and m = 20.
Factorized X and Y are given as follows:

12 3 4
1

a7

20000 WN -
[

[S)
-

123456 7 89 10 11 12 13 14 15 16 17 18 19 20
1 1 1
, (18)

The index sets for machine cells are decoded according to
(1) based on (17); i.e., C; = {1,4,6}, Co = {2,3}, C3 =
§5, 9}, and Cy = {7,8,10}. Similarly, the index sets for part
amilies are decoded according to (2) based on (18); i.e., F1 =
{1,4,7}, Fo = {2,3,5,8, 10?, F3 = {13,14,15,17,18,20},
and F, = {6,9,11,12,16,19}. Based on Cy, Cs, C3, Cy, J1,
Fa, F3, and Fy, V is permuted to become the following ideal
incidence matrix V':

2 3 5 8 10 13 14 15 17 18 20 6 9 11 12 16 19

[
[FESESES
[

==
==
==
==
-

1
1 1 1 1 1 1
11 1 1 1 1
11 1 1 1 1
0 11 1 1 1 1

_ To visualize the resulting formulation, Fig. 2 shows V" and
V" with four cells and no exceptional element in the ideal case.

H0NOUWwN DR =
-
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-
-
-

Original machine-part incidence matrix

Machines
Machines

2
4
6
8

10
5 10 15 20 5 10 15 20
Parts Parts

Fig. 2: The original machine-part incidence matrix and
permuted machine-part incidence matrix, where dots represent
1 elements and O elements are left blank.

Consider a nonideal case with 40 machines, 100 parts, and
ten groups (i.e., n 40, m 100, and r 10) where

exceptional elements are inevitable [51]. Fig. 3 illustrates the
machine-part incidence matrix factorization and permutation
processes.

Permuted machine-part incidence matrix

7
@ / v AN
Factorization [, .. . _ S \
o N R I
: 1 100:
100 | |
Ci, Ca, oo, Cri Fiy For ooy Ty : |
. ¢ ' |
Permutation @ Decoding I |
| |
vV | |
40 | |
\ /
Ne -
1 "
1 100

Fig. 3: The original machine-part incidence matrix V is
factorized into two indicator matrices X and Y, and then V is
permuted to become the block-diagonalized incidence matrix
V based on the decoded information from X and Y.

B. Problem Reformulation

Let f(X,Y) = || XY — V||%. It is rewritten in its element
form:

F(XY)



n m T r r
= Z Z { Z(xik.%‘ilykjylj) -2 Z Vi TikYrj + U?j} .

i=1 j=1 (k=11=1 k=1
(19)

Lemma 1. If z;; € {0,1}, yx; € {0,1}, >f_, wix = 1, and
> i1 Ykj = 1, then

T T r
Z Z TikTaYkjYy = Z TikYkjs (20)
k=1 I=1 k=1
[Tie — yrjl = Tin(1 — yrz) + yrj (1 — Ti)- 21

Proof. By utilizing the distributive property of addition and
recombining the terms, Eq. (20) is converted to a square of a
single summation as follows:

T T T T T
szikxilykjylj = inkykj Z!Eilylj = (Z xikykg)
k=11=1 k=1 =1 k=1

For rxlk and ykaSatisfying Z;T:l Tip=1and Y ;_ Yk =
L O pey ®iryy)” = land >, zayr; = 1 i2f and only
if 3k, 2, = yr; = 1, otherwise (E;lexikykj) = 0 and

s T T
> k=1 TikYkj = 0. Then, (30, Tikynj)” = Do)y TikYkj-
As a result,

T T I
Z Z TikTilYki Y15 — Z LikYkjs
k=1 1=1 k=1
To prove equation (21), consider the two cases for the two
binary variables x;; and yy;:
o If 21, = yi;, then |k —ykj| = 0. Both z(1 —ykj) and
Yi; (1 — xi1) are also 0.
o If x; 75 Ykjs then |£L’Zk — ykjl =1.

- If ;% = 1 and yg; = 0, then x;x(1 — yx;) = 1 and
Yr;i(1 — xi) = 0. As a result, ;5 (1 — y;) + yr; (1 —
xik) =1.

- If ;% = 0 and yg; = 1, then x;,(1 — yx;) = 0 and
Yr;i (1 — i) = 1. As aresult, x5 (1 — yi;) + yr; (1 —

xik) =1.
As a result, in both cases, i (1 — yr;) +yr; (1 — zix) is equal
to |37ik — ykj|. O

Theorem 1. If the constraints in (16) hold, then the quartic
pseudo-Boolean function in f(X,Y) can be equivalently
reduced to a quadratic one.

Proof. By substituting (20) into (19) and combining like
terms, f(X,Y) becomes

P(X,Y) = ZZ {(1 = 2v;5) Z%kykj + Uizj} - (22)

i=1 j=1 k=1
O

Remark 1. The theorem above reveals that the quartic
objective function f(X,Y) can be equivalently quadratized
by leveraging the constraints without adding any auxiliary
variables or extra constraints, in contrast to most existing
methods [52]-[57]

Theorem 2. ¢(X,Y) is an upper bound of the number of
exceptional elements (EE).

Proof. Substituting (21) into (3), EE in (3) becomes:

1 n m T
izzzvijkﬂik —ykj\

i=1 j=1 k=1
1 n m T
=3 DN {vwin (L= yrg) + vigyng (1 — zir)}
i=1 j=1 k=1
1 n m T
=3 Z Z Z {vijzin — 20i5TinYr; + VijYks t -
=1 j=1 k=1

Then, the difference between ¢(X,Y) and EE is expressed
as:

2 ¢(X,Y) - EE

N T

k=1
n m T

1
—3 {vijir — 205 TinYr; + VijYi; }
i=1 j=1k=1
n m T 1 1
= ZZ |:xikykj ~ VigTikYkj — 5 VijTik — 2%‘;‘2/@} +vij ¢
i=1 j=1 (k=1

For simplicity, for each pair of indices (4, j), let

- 1 1
qij = Z TikYkj — VijTikYkj — §'Uz'j17ik - Qvijykj + g5
k=1
In view of the constraints (i.e., Y ,_; Zix = 1, D 5y Ukj =
1, z;, € {0,1} and yi; € {0,1}), it follows that:
o I—Uij if Elk‘,a:ik.:ykal,
%= 0 if otherwise.

Thus, the difference between ¢(X,Y) and EE is
nonnegative:
$(X,Y)—EE=> "> ¢ >0,
i=1j=1
As a result, ¢(X,Y’) is an upper bound of EE. O

Two quadratic penalty functions are defined as follows for
handling the constraints in (16b) and (16c):

1 1 n r
pa(X):iuXer*€n”%:§Z( xijfl)Q,
1

i=1 j=

1 1 m ks
(YY) = §||YT6T —eml3 = 3 Zl(kzlykj - 1)
J: =

A penalty function is formulated based on p,(X) and p,(Y")
as follows:

p(X, Y) = pa(X) +pb(Y)

1 n T 9 1 m
= 52 (> mij—1)"+ 52(2%;‘ —-1)%
=1 j=1 j=1 k=1

(23)



By combining the penalty function (23) with objective
function (22), a penalized objective function is defined:
6p(X,Y) = ¢(X,Y) + pp(X,Y), where p is a positive
penalty parameter. As such, problem (16) is reformulated to a
QUBO problem with the penalized objective function:

min ¢,(X,Y)
st. X €{0,1}™", Y € {0,1}"*"™.

(24)
(25)

It is known that problems (16) and (24) are equivalent in
terms of their optimal solutions, provided that the penalty
parameter p is set with a sufficiently large value [58].

IV. ALGORITHM DESCRIPTION

In this section, we describe the CNO-based algorithm based
on BMm (11) to solve QUBO problem (24). As the dynamic
equation of BMm (11) is composed of the negative gradient
of a given objective function, we drive the partial derivatives
of ¢,(X,Y) in (24) with respect to z;; and y; as follows:

fore=1,2,....mk=12,....,15=1,2,....m
00,(X)Y) &
¢pa Z 2U1j Ykj +p szq 1); (26)
Tik J=1 a=1
29,(X,Y - "
9¢p(X,Y) _ > =20z +p( Y yar —1). @7

OYrj i=1 a=1

Based on (26) and (27), the neurodynamic equation and
activation functions of BMms for updating X and Y in (24) are
customized, respectively, as follows: for i = 1,2,...,n;k =

1,2,...,r

m

u () =D (1= 2v)yn;(t = 1) +p | D wiglt —1) = 1/2
J=1 a7k
(28a)
1, if 1/ (1+exp(—u}(t)/T)) > rand,
Ti(t) = .
0, otherwise.
(28b)
Fork=1,2,...,m5=1,2,....m
up; () =Y (1= 2)vijai(t — 1) +p [ D gt —1) —1/2
i=1 q#k
(29a)

1, if1/ (1 + exp(—ué(t)/T)) > rand,

Yns () = .
0, otherwise.

(29b)

Algorithm 1 details the neurodynamics-driven constrained
binary matrix factorization approach to machine-cell and
part-family formation (CNO-MP). A population of BMms is
utilized for scattered searches in Steps 3 - 5. The individual
best solutions X ) and V() are identified in Steps 6 - 9. The
best solution among the BMms is determined in Steps 11 - 18.
The initial states of BMms are re-positioned using the particle
swarm optimization update rule in Steps 19 - 21. The diversity
is measured in Step 22, and if it falls below the threshold A, a

)

bit-flip mutation is executed in Steps 23 - 25. The information
on machine cells and part families is decoded in Step 27. The
code of CNO-MP is available in Github'.

Algorithm 1: CNO-MP algorithm

Input: N, X (0) € {0,1}"*" and
Y®(0) € {0,137, ) € [~1,1]"" and
o € [=1,1]7%™ for i =1,...,N, To. 0. co,
c1, Co, A\, termination criterion M.

Output: machine cells and part families.

while | < M do

fori=1to N do

repeat

Update X (t) and Y (t) using BMm

according to (28) and (29), respectively;

until convergence;

if ¢,(X@,Y0) < ¢,(X® V®) then

X@ X,

Yy v,

A W N =

o e N S W

end

10 end

11 i* = argmin;{.. ,(b (X Y@y Y
2 | if ¢,(X0), YD) < ¢, (X*,Y*) then

13 l+0;

14 X* ¢ X0

15 Y* « Y9,

16 else

17 | I+ 1

18 end

19 fori=1to N do

20 Update velocity and initial neuronal states
X@(0) and Y@ (0) according to (12) ;

21 end

22 Calculate the diversity of the swarm § in (13);

23 if 6 < A then

24 ‘ Perform the bit-flip mutation in (14);

25 end

26 end

27 The information on machine cells and part families is
decoded according to (1) and (2);
28 return the decoded information on machine cells and

> part families.

V. EXPERIMENTAL RESULTS
A. Experiment Setups

The experiments are based on eighteen datasets with their
major parameters listed in Table I. The performance of CNO-
MP is compared with the results using CNO-BMF [37] based
on the quartic objective function f(X,Y’) in (19) and the best-
known results from the references in Table 1.

In this study, the hyper-parameters N (i.e., population
size) and M (i.e., termination criteria) in Algorithm 1
are determined via 25-run Monte Carlo tests with random

Uhttps://github.com/HongzongLI-CS/CNO-MP



TABLE I: The major information of the 18 benchmark
incidence matrices and the hyper-parameter values used in the
experiments.

# nxXm r N M References
1 5x17 2 2 2 [5]
2 5x17 2 2 2 [59]
3 5x17 2 2 5 [59]
4 7 x 11 2 10 10 [60]
5 10 x 10 3 2 3 [61]
6 15 x 10 3 2 2 [62]
7 8 x 20 3 2 2 [43]
8 10 x 20 4 2 2 [50]
9 23 x 20 2 2 5 [63]
10 | 24 x 40 7 2 2 [64]
11 | 24 x 40 7 2 2 [64]
12 | 24 x 40 7 2 5 [64]
13 | 24 x 40 7 2 5 [64]
14 | 24 x 40 7 60 50 [64]
15 | 24 x 40 7 40 100 | [64]
16 | 24 x 40 7 15 20 [64]
17 | 30 x 41 3 10 3 [65]
18 | 40 x 100 10 | 2 2 [51]

initialization on the eighteen datasets. Figs. 7 and 8§ depict the
box-plots of the results of the Monte Carlo tests using CNO-
MP over 25 runs with varied initial states on the eighteen
datasets. As shown in Figs. 7 and 8, the median is represented
by a center bar within each box. The upper and lower quartiles
(g (0.75) and g,,(0.25)) are indicated by the top and bottom
of each box, respectively. The whiskers depict the highest and
lowest values observed in the tests. The values of M and IV are
set to values at which the deviation of the objective function
value becomes zero. Table I records the hyper-parameters
values used in the experiments.

In the experiments, the parameters of CNO-MP are set
as follows. The mutation probability P,, in (14) is set to a
sufficiently small value (i.e., 0.01), and the diversity threshold
A is set to 0.004, same as the values used in many studies;
e.g., [37], [66]. In the particle swarm optimization rule in (12),
co =1, ¢; = co = 2, as typically used values [67].

B. Neurodynamic Behaviors

Fig. 4 depicts six snapshots of the convergent behaviors
of the objective function f(X,Y) in (16a) and the penalty
function p(X,Y’) in (23) in the inner loop of CNO-MP on
the six datasets. As shown in Fig. 4, the objective and penalty
functions reach stationary points within 70 iterations, and the
values of the penalty function decrease to zero, indicating
that BMms converge to feasible solutions with random initial
neuronal states.

Fig. 5 depicts the convergent behaviors of f(X,Y") resulting
from CNO-MP on the six datasets, where the red envelopes
depict the objective functions of group-best solutions, i.e.,
f(X*,Y*). Tt shows that CNO-MP converges within 40
iterations.

C. Performance Comparisons

Table II summarizes the Monte-Carlo study with the
objective function values, four criteria values resulting from
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Fig. 4: Snapshots of the objective function values of f(X,Y)
in (16a) and the penalty function values of p(X,Y") in (23) in
the inner loop of CNO-MP on the six datasets.
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Fig. 5: The convergent behaviors of CNO-MP.

CNO-BMF with the quartic objective function f(X,Y) in (19)
and CNO-MP with the quadratic objective function ¢(X,Y)
in (22) over 50 runs with random initialization on the eighteen
benchmark datasets, where the best results are boldfaced. As
shown in Table II, CNO-MP with the quadratic objective
function outperforms CNO-BMF with the quartic objective
function in terms of the objective function values on all of
the datasets and most of the criteria values. Fig. 6 depicts
the average computational times of CNO-BMF and CNO-MP
over 50 runs with random initialization on the 18 benchmark
datasets. It shows that the computational times of CNO-MP
are smaller than those of CNO-BMF across all 18 datasets,
demonstrating the superior efficiency of CNO-MP. In addition,
the computational times of CNO-MP are not proportionally
larger on large-sized problems, indicating the high efficiency
and scalability of CNO-MP.

Table III summarizes the Monte-Carlo study with the four
criteria resulting from CNO-MP over 50 runs with random
initialization with quadratic objective function on the eighteen
datasets, where the best-known results are documented in the
literature in Table I. The second and third columns of Table III
show that the values of the objective function are always larger
than or equal to the values of EE across the eighteen datasets,
echoing the theoretical result in Theorem 2. As shown in
Table III, the f(X,Y) values and EE values resulting from

CNO-MP on datasets #7 and #8 are equal, implying that PE
values are minimal in view that f(X,Y) is an upper bound of
EE. As shown in the remaining eight columns of Table III, out
of the total 72 performance indexes examined, 16 index values
are better than, and 37 index values are equal to the index
values of the best-known results reported in the literature.
Table IV tabulates the counts of best results achieved using
CNO-MP and twelve baselines across the four metrics (PE,
BE, MU, and GE) on the 18 datasets. It shows that CNO-
MP achieves the best results with 53 best metric values in
total, more than doubled the second-best method (ZODIAC
in [51]) with 21 best values. Specifically, CNO-MP achieves
the best-known results in the literature in terms of PE on 12
datasets out of 18 datasets (i.e., 66.7%), in terms of BE on
eight datasets (i.e., 44.4%), in terms of MU on 17 datasets
(i.e., 94.4%), and in terms of GE on 16 datasets (i.c., 88.9%).

VI. CONCLUDING REMARKS

This paper proposes a neurodynamics-driven constrained
binary matrix factorization approach to machine-cell and
part-family formation. By minimizing the Frobenius norm
of factorization errors, the proposed approach can decode
the information of machine cells and part families from
factorized matrices. To facilitate the solution process, the
formulated binary matrix factorization problem is equivalently
reformulated to a quadratic unconstrained binary optimization
problem via polynomial-degree reduction and constraint-
violation penalization. To solve the reformulated problem,
the proposed approach leverages the hill-climbing local
search capability of Boltzmann machines for scattered
searches and the global search capability of collaborative
neurodynamic optimization to seek global optima. The
experimental results demonstrate that the proposed approach
statistically outperforms an existing neurodynamics-driven
binary matrix factorization approach and the best-known
results in the literature. Further investigations may aim to
enhance the efficiency and scalability of the neurodynamics-
driven constrained binary matrix factorization approach via
machine learning, develop bi-level approaches to determine
the number of machine cells and part families according to
factorization or manufacturing performance metrics, and adapt
the proposed approach for other applications such as supply
chain management.
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TABLE II: Monte-Carlo test results with average values of objective function value and four criteria achieved using CNO-BMF
and CNO-MP over 50 runs with random initialization on the 18 datasets

F(X,Y) 1 PE | BE © MU GE 1

# | "CNO-BMF CNO-MP CNO-BMF CNO-MP CNO-BMF CNO-MP CNO-BMF CNO-MP CNO-BMF CNO-MP

1| 3.00 + 0.00 3.00 + 0.00 0.0000 == 0.0000  0.0000 = 0.0000 | 14.0000 =+ 0.0000 14.0000 + 0.0000 | 0.8235 = 0.0000  0.8235 == 0.0000 | 0.9118 + 0.0000  0.9118 == 0.0000
2 | 528+ 1.02 5.00 + 0.00 0.1300 + 0.0250  0.1250 + 0.0000 | 14.7200 + 1.4000 15.0000 + 0.0000 | 0.8136 + 0.0331  0.8235 -+ 0.0000 | 0.8485 + 0.0286  0.8562 + 0.0000
3 | 776 + 1.01 7.00 + 0.00 0.2340 + 0.0535  0.2000 = 0.0000 | 20.0400 + 1.3687 19.2000 + 1.0000 | 0.8329 + 0.0199  0.8421 =+ 0.0000 | 0.7769 + 0.0259  0.7961 =+ 0.0000
4 | 1220 265 10.00 &+ 0.00 | 0.0717 & 0.1017  0.0000 & 0.0000 | 21.2400 + 2.5212 23.0000 = 0.0000 | 0.6792 = 0.0331  0.7059 & 0.0000 | 0.8274 + 0.0310  0.8529 + 0.0000
5 | 4.00 + 0.00 4.00 + 0.00 0.0000 == 0.0000  0.0000 = 0.0000 | 63.0000 =+ 0.0000 63.0000 £ 0.0000 | 0.9200 = 0.0000  0.9200 =+ 0.0000 | 0.9600 = 0.0000  0.9600 = 0.0000
6 | 21.04 £ 020 21.00 + 0.00 | 0.1304 + 0.0000  0.1304 + 0.0000 | 14.5600 + 0.5066 14.4800 4 0.5099 | 0.5258 4 0.0027  0.5263 & 0.0000 | 0.7244 + 0.0016  0.7247 + 0.0000
7 | 9.00 + 0.00 9.00 + 0.00 0.1475 =+ 0.0000  0.1475 =+ 0.0000 | 78.5600 + 0.7681 78.6400 = 0.7000 | 1.0000 =+ 0.0000  1.0000 =+ 0.0000 | 0.9583 = 0.0000  0.9583 =+ 0.0000
8 | 0.00 + 0.00 0.00 + 0.00 0.0000 = 0.0000  0.0000 + 0.0000 | 68.0000 + 0.0000 68.0000 =+ 0.0000 | 1.0000 + 0.0000  1.0000 + 0.0000 | 1.0000 £ 0.0000  1.0000 + 0.0000
9 | 10592 + 3.96 104.00 + 0.00 | 0.7368 + 0.0739  0.7464 + 0.0452 | 64.3200 + 1.2819 65.2800 + 1.4866 | 0.5701 + 0.0406  0.5853 + 0.0169 | 0.6840 + 0.0165  0.6911 =+ 0.0048
10 | 1.00 + 0.00 1.00 + 0.00 0.0000 = 0.0000  0.0000 + 0.0000 | 194.0000 + 0.0000 194.0000 £ 0.0000 | 0.9924 + 0.0000  0.9924 - 0.0000 | 0.9962 + 0.0000  0.9962 - 0.0000
11| 6240 £ 17.78 2100 £ 0.00 | 02646 + 0.1006  0.0769 + 0.0000 | 131.5600 = 17.0858  164.0800 + 1.8466 | 0.7735 + 0.0647  0.9160 =+ 0.0000 | 0.8663 + 0.0376  0.9520 =+ 0.0000
12 | 62.08 £ 19.89 40.00 + 0.00 | 02937 + 0.1406  0.1527 + 0.0000 | 121.2800 + 18.1487  139.7200 + 1.7205 | 0.7969 + 0.0653  0.8473 + 0.0000 | 0.8759 + 0.0381  0.9116 =+ 0.0000
13 | 12636 + 7.33 40.00 £ 0.00 | 0.8574 + 0.0805  0.1527 + 0.0000 | 42.9600 + 11.4727 139.4000 + 1.8930 | 0.6036 & 0.1208  0.8473 & 0.0000 | 0.7413 + 0.0603  0.9116 + 0.0000
14 | 86.00 + 0.00 86.00 + 0.00 | 0.3923 + 0.0224 03963 + 0.0143 | 78.0400 + 2.7911 77.6190 + 22243 | 0.6935 + 0.0096  0.6950 + 0.0065 | 0.8166 + 0.0033  0.8171 + 0.0023
15 | 96.48 + 1.71 94.00 + 0.00 | 0.6751 + 0.0408  0.6252 + 0.0034 | 61.0800 + 3.1348 61.4500 + 2.9105 | 0.8510 + 0.0578  0.8023 + 0.0042 | 0.8769 + 0.0267 0.8556 = 0.0019
16 | 105.72 + 4.39 99.00 + 0.00 | 0.7868 + 0.0314  0.7497 + 0.0130 | 43.7600 + 5.0438 46.0000 + 3.4008 | 0.8935 + 0.0699  0.9589 + 0.0431 | 0.8917 + 0.0353  0.9268 + 0.0208
17 | 11029 + 0.69 110.00 + 0.00 | 0.7959 & 0.0360  0.7769 + 0.0232 | 59.0833 =+ 2.1653 59.8000 + 1.8028 | 0.7745 + 0.0769  0.7356 + 0.0382 | 0.8446 + 0.0368  0.8260 + 0.0181
18 | 31912 + 122,11 73.00 = 0.00 | 0.5030 £ 0.2245  0.0857 £ 0.0000 | 3582400 + 128.1475  576.9600 -+ 1.4283 | 0.6222 = 0.1968  0.9121 = 0.0000 | 0.7827 = 0.1099  0.9510 = 0.0000




TABLE III: Monte-Carlo test results with average values of objective function, the number of exceptional elements, and four
criteria achieved using CNO-MP over 50 runs with random initialization and their best-known values in the literature on the

18 datasets

PE | BE 1 MU 1 GE 1

# FxY) EE CNO-MP b

- est-known CNO-MP best-known CNO-MP best-known CNO-MP best-known
1 3.00 &+ 0.00 0.00 £ 0.00 | 0.0000 + 0.0000  0.0000 [5] 14.0000 + 0.0000 14.0000 (5] 0.8235 + 0.0000  0.8235 [5] 0.9118 + 0.0000  0.9118 [5]
2 5.00 & 0.00 2.00 + 0.00 | 0.1250 & 0.0000  0.1250 [59] 15.0000 + 0.0000 15.0000 [59] 0.8235 + 0.0000  0.8235 [59] | 0.8562 + 0.0000  0.8562 [59]
3 7.00 £ 0.00 4.00 £ 0.00 | 0.2000 £ 0.0000  0.1250 [59] 19.2000 + 1.0000 16.0000 [59] 0.8421 + 0.0000  0.8235 [59] | 0.7961 + 0.0000  0.8562 [59]
4 10.00 £ 0.00 3.00 + 0.00 | 0.0000 £ 0.0000  0.0000 [61] 23.0000 £ 0.0000 21.0000 [61] 0.7059 + 0.0000 0.7059 [61] | 0.8529 + 0.0000 0.8529 [61]
5 4.00 £ 0.00 0.00 £ 0.00 | 0.0000 £ 0.0000 0.0000 [62] 63.0000 £+ 0.0000 63.0000 [62] 0.9200 + 0.0000  0.9200 [62] | 0.9600 + 0.0000 0.9600 [62]
6 21.00 £ 0.00 0.00 £ 0.00 | 0.1304 + 0.0000 0.1304 [60] 14.4800 + 0.5099 18.0000 [60] 0.5263 + 0.0000  0.5263 [60] | 0.7247 + 0.0000  0.7247 [60]
7 9.00 £ 0.00 9.00 + 0.00 | 0.1475 & 0.0000  0.1475 [43] 78.6400 £ 0.7000 78.0000 [43] 1.0000 £ 0.0000  1.0000 [43] | 0.9583 £ 0.0000  0.9583 [43]
8 0.00 £ 0.00 0.00 £ 0.00 | 0.0000 + 0.0000 0.0000 [50] 68.0000 £ 0.0000 68.0000 [50] 1.0000 £ 0.0000  1.0000 [50] | 1.0000 £ 0.0000  1.0000 [50]
9 104.00 £ 0.00 | 83.60 & 5.07 | 0.7464 £ 0.0452  0.1140 [63] 65.2800 + 1.4866 78.0000 [7] 0.5853 + 0.0169  0.4280 [68] | 0.6911 + 0.0048  0.6667 [7]
10 1.00 £ 0.00 0.00 £ 0.00 | 0.0000 £ 0.0000 0.0000 [51] | 194.0000 + 0.0000  198.0000 [51] | 0.9924 + 0.0000  1.0000 [51] | 0.9962 + 0.0000  1.0000 [51]
11 21.00 £+ 0.00 10.00 £ 0.00 | 0.0769 £ 0.0000 0.0769 [51] 164.0800 + 1.8466 163.0000 [51] | 0.9160 £ 0.0000  0.9160 [51] | 0.9520 + 0.0000 0.9520 [51]
12 | 40.00 £ 0.00 | 20.00 £ 0.00 | 0.1527 £ 0.0000  0.1527 [51] | 139.7200 &+ 1.7205  143.0000 [51] | 0.8473 £ 0.0000  0.8473 [51] | 0.9116 + 0.0000  0.9116 [7]
13 40.00 + 0.00 20.00 £+ 0.00 | 0.1527 4+ 0.0000 0.1527 [51] 139.4000 4+ 1.8930  142.0000 [51] | 0.8473 + 0.0000 0.8284 [51] | 0.9116 + 0.0000 0.9116 [51]
14 | 86.00 £ 0.00 | 51.52 £+ 1.86 | 0.3963 £ 0.0143  0.3664 [68] 77.6190 + 2.2243 95.0000 [68] 0.6950 + 0.0065  0.6434 [68] | 0.8171 + 0.0023  0.7928 [68]
15 94.00 £+ 0.00 81.90 + 045 | 0.6252 £ 0.0034  0.4046 [68] 61.4500 £+ 2.9105 76.0000 [68] 0.8023 + 0.0042  0.5909 [51] | 0.8556 + 0.0019 0.7635 [7]
16 | 99.00 £ 0.00 | 97.46 £ 1.69 | 0.7497 4+ 0.0130  0.4351 [68] 46.0000 £ 3.4008 68.0000 [68] 0.9589 + 0.0431  0.5290 [S1] | 0.9268 + 0.0208  0.7292 [7]
17 | 110.00 &+ 0.00 | 99.44 £+ 2.97 | 0.7769 £ 0.0232  0.0234 [68] 59.8000 + 1.8028 68.0000 [7] 0.7356 + 0.0382  0.2850 [65] | 0.8260 + 0.0181  0.6388 [7]
18 | 73.00 £ 0.00 | 36.00 £ 0.00 | 0.0857 £ 0.0000  0.0857 [51] | 576.9600 £ 1.4283  577.0000 [51] | 0.9121 + 0.0000  0.9121 [S51] | 0.9510 £ 0.0000  0.9510 [51]

TABLE IV: Counts of best results achieved using CNO-MP

and twelve baselines on 18 datasets
# of Best [14]
Method PE BE MU GE total
CNO-MP (herein) 12 8 17 16 53 [15]
ROC [5] 1 1 1 1 4
MACE [59] 2 2 2 2 6
PFA [61] 1 1 1 1 4 [16]
DCA [62] 1 1 1 1 4
Two clustering [60] 1 1 1 1 4
Ideal-seed [43] 1 1 1 1 4
P-median [50] 1 1 1 1 4 [17]
OKD [63] 1 0 0 0 1
ZODIAC [51] 5 5 7 4 21
Subconstructing [65] 0 0 1 0 1
LA [7] 0 2 0 5 2 [18]
TPC [68] 4 3 2 1 7
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